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Section 1: Introduction

1. Introduction

The lroliferation of distriltel co1l)lpt,'r systels uSgiv<s 1cruea;silig iitiport.auuce

to correctness proofs of distrilb)ted algorithns. Techniques for verifying sequential

algorithms have been extended to handle concurrent and distributed ones- -for ex-

ample, by Owicki and Gries [OG], Manna and Pnueli [MP], Lamport and Schneider

[LSc], and Alpern and Schneider [AS]. Pictic-] algorithms are usually optimized

for efficiency rather than simplicity, and proving them correct may be feasible only if

the proofs can be Otriictired. For a sequential algorithm. l -c. ;i. strutur . by

developing a hierarchy of increasingly detailed versions of the algorithm and prov-

ing that each correctly implements the next higher-level version. This approach

has been extended to concurrent algorithms by Lamport [L]. Stark [S], Harel [H].

Kurshan [K], and Lynch and Tuttle [LT], where a single action in a higher-level

representation can represent a sequence of lower-level actions. The higher-level ver-

sions usually provide a global view of the algorithm, with progress made in large

atomic steps and a large amount of nondeterninism allowed. At the lowest level is

the original algorithm, which takes a purely local view, has more atomic steps, and

usually has more constraints on the order of events.

With its totally ordered chain of versions, this hierarchical approach usually

does not allow one to focus on a single task in the algorithm. The method described

in this paper extends the hierarchical approach to a lattice of versions. At the

bottom of the lattice is the original algorithm, which is a refinement of all other

versions. However, two versions in the lattice may be incommeasurable, neither one

being a refinement of the other.

Multiple higher-level versions of a communication protocol, each focusing on

a different function, were considered by Lain and Shankar [LSh]. They called each

higher-level version a "projection". If the original protocol is sufficiently modular.

then it can be represented as the composition of the projections. and the correctness

of the original algorithm follows immediately from the correctness of the projections.

This approach was used by Fekete, Lynch. and Shrira [FLS] to prove the correctness

of Awerbuch's synchronizer [Al].

Not all algorithms are modular. In practical algorithms. modularity is often

destroyed by Optimizations. The correctness of a non-modular algorithm is not an

immediate consequence of the correctness of its higher-level versions. The method
presented in this paper uses the correctness of higher-level versions of an algorithm

to simplify its proof. The proofs of correctmess of all the versions in the lattice

2
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Section 1: Introduction

(in which the original algorithm is the lowest-level version) constitute a structured

proof of the algorithm.

Any path through our lattice of representations ending at the original algo-

rithm is a totally-ordered hierarchy of versions that caii be used in a conventional

hierarchical proof. Why do we need the rest of the lattice? Each version in the

lattice allows us to formulate and prove invariants about a separate task performed

by the algorithm. These invariants will appear somewhere in any assertioial proof

of the original algorithm. Our method permits us to prove them at as high a level

of abstraction as possible.

The method proceeds inductively, top-down through the lattice. First, the

highest-level version is shown directly to have the original algorithm's desired prop-

erty, which involves proving that it satisfies some invariant. Next, let A be any
algorithm in the lattice, let B 1 ,..., Bi (i _ 1) be the algorithms immediately above

A in the lattice, and let Q1, ..., Qi be their invariants. 'We prove that A satisfies

the same safety properties as each Bj, and that a particular predicate P is invariant

for A. The invariant P has the form Q A QI A .-. A Q, for some predicate Q. In this
way, the invariants Qj are carried down to the proof of lower-level algorithms, and

Q introduces information that cannot appear any higher in the lattice-information
about details of the algorithm that do not appear at higher levels, and relations be-

tween the Bj. We provide two sets of sufficient conditions for verifying these safety

properties, one set for the case j' = 1. and the other for i > 1. We also provide
three techniques for verifying liveness properties; only one of them makes use of the

lattice structure.

The technique is used to prove Gallager, Humblet and Spira's distributed min-

imum spanning tree algorithm [GHS). This algorithml has been of great interest for

some time. There appears in [GHS] an intuitive description of why the algorithm
should work, but no rigorous proof. There are several reasons for giving a. formal

proof. First, the algorithm has important applications in distributed systems, so

its correctness is of concern. Second, the algorithm often appears as part of other

algorithms [A2,AG], and the correctness of these algorithms depends upon the cor-

rectness of the xninimmn spanning tree algorithm. Finally, many concepts and

techniques have been taken from the algorithm, out of context, and used in other

algorithms [A2,CT,G]. Yet the pieces of the algorithm interact in subtle ways, some

of which are not explained ili the original paper. A careful proof of the entire

;lg,i thu (-, indicate th eC (Ic) nd'l('i,'s I ,,tw(ei tle pi(,Cs.

Our proof itiethod he'lped us to fil( the correct ii variants; it allowed us to
O
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Section 2: Foundations

describe the algorithmt at a high level, yet precisely, and to 11sc our iitiiioni al siut

the algorithm to reason at an appropriate level of abstraction. A by-product of oin

proof was a better understanding of the purpose and importance of certain parts of

the algorithm, enabling us to discover a slight optimilzatiol.

The complete proof of the correctness of this minimum spanning tree algorithm

is very long and can be found in [W]. One reason for its length is the intricacy of the

algorithm. Another reason is the duplication inherent in the approach: the code

in all the versions is repetitive, because of carry-over from a higher-level version

to its refinement, and because the original algorithm cannot be presented as a

true composition of its immediate prujections; the repetition in the code leads to

repetition in the proof. The full proof also includes extremely detailed arguments--

detailed enough so we hope that, in the not too distant, future, they will be machine-
checkable. This level of detail seems necessary to catch small bugs in the program

and the proof.

Two other proofs of this algorithm have recently been developed. Stomp and

de Roever [SdR] used the notion of communication-closed layers, introduced by

Elrad and Francez [EF]. Chou and Gafni [CG] prove the correctness of a simpler.

more sequential version of the algorithm and then prove that every execution of the
original algorithm is equivalent to an execution of the more sequential version.

2. Foundations

This section contains the definitions and results that form the basis for our

lattice-structured proof method. Our method can be used with any state-based,

assertional verification technique. In this paper, we formulate it in terms of the
I/O automaton model of Lynch, Merritt. and Tuttle [LT,LM], which provides a

convenient, ready-made "language" for our use. A smunmary of the I/O automaton

model appears in the Appendix.

The first step is to design the lat Iice,, ii, '.mg one's intuit ion ak out the algorithm.

Each element in the lattice is a version of the algorithm, ,described as ;11 I/O au-
tornaton, and has associated with it a predicate. The bottom element of the lattice

is the original algorithm. Next, we must show that all the predicates in the lattice

are invariants. The invariant for the top element of the lattice must be shown di-
rectly. Assuming that Ql...., Qj are invariants for the versions Bl.., Bi directly 1%izNe

above A in the lattice, we verify that predicate P = Q A Q, A. • A Qi is invariant for

A, by demonstrating mappings that preserve Q and take executions of A to execu-

tions of B 1,..., Bi (thus preserve Ql A ... A Qj). (Findin'g these mappings requires

4
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Section 2: Foundations

insight about the algorithm.) Finally, the lattice is used to show that the original
algorithm solves the problem of interest by showing directly that the top element
in the lattice solves the problem, and showing a path A, ,..., Ak in the lattice from.S

top to bottom such that each version in the path satisfies its predecessor. To show

that Ai satisfies Ai- 1 , we show that for every fair execution of Aj, there is a fair

execution of Ai- 1 with the same sequence of external actions. The mapping used

to verify the invariants takes executions to executions; by adding some additional

constraints on the mapping, we can prove, using the invariants, that it takes fair

executions to fair executions with the same sequence of external actions, i.e., that

liveness properties are preserved.

Section 2.1 deals with safety properties. First, suppose there are two automata, S
A and B, where B is offered as a "more abstract" version of A. We define a mapping

from executions of A to sequences of alternating states and actions of B; if the

mapping obeys certain conditions, we say A simulates B. Lemma 1 proves that this

definition preserves important safety properties, namely that executions of A map to
executions of B, and that a certain predicate is an invariant for A. Next we suppose

that there are several higher-level versions, A 1 , A2 , etc., of one more concrete

automaton A. There are situations in which it is difficult to show independently

that A simulates A, and A simulates A 2 , but invariants about states of A 2 can help

show a mapping from A to A,, and invariants about states of A, can help show

a mapping from A to A 2. To capture this, we define a notion of simultaneously

simulates, which Lemma 2 proves preserves the same safety properties as in Lemma

1. Of course, to be able to apply Lenuna 2, we must know what the invariants of

A 1 and A 2 are, which may require having already shown that A 1 and A 2 simulate

other automata.

Section 2.2 considers liveness properties. Given automata A and B, and a

locally-controlled action p of B, a definition of .4 being equitable for P is given:

Lemmas 3 and 4 show that this definition implies that in the execution of B obtained

from a fair execution of A by either of the simulation mappings, once o becomes

enabled, it either occurs or becomes disabled. We are on our way to verifying the

fairness of the induced execution of B.

Three methods of showing that A is equitable for locally-controlled action P
of B are described. The first method is to show that there is an action p of A

that is enabled whenever 'p is., and whose occurrence implies 'p's occurrence. (Cf.
Lemma. 5. ) "€

The second liiethod uss a definit.ioii of A being progreqsive for 'p. The intu-

5



Section 2.1: Safety

ition behind the definition is that. there is a set of "helping" actions of A that are

guaranteed to occur, and which make progress toward an occurrence of V in the

induced execution of B. Lemma 6 shows that progressive implies equitable.

The third method for checking the equitable condition can be useful when

various automata are arranged in a lattice. (See Figure 1.) Suppose B and C are

more abstract versions of A, and D is a more abstract version of C. In order to

show that A is equitable for action (p of B. we demonstrate an action p of D that

is "similar" to o, such that C is progressive for p using a set T of helping actions,

and A is equitable for all the helping actions in TI. (Cf. Lemma 7.)

D P

V B C T

A

Figure 1

Theorems 8 and 9 in Section 2.3 relate the definitions of simulates, simultane-

ously simulates, and equitable to the notion of satisfaction.

2.1 Safety

Let A and B be automata. Throughout this paper, we only consider automata

such that each locally-controlled action is in a separate class of the action partition.

(The definitions and results of this section can be generalized to avoid this assump-

tion, but the statements and proofs are more complicated, and the generalization

is not needed for the proof of the [GHS] algorithm.) Let alt-seq(B) be the set of

*all finite sequences of alternating actions of B and states of B that begin and end
with an action, including the empty sequence (and the sequence of a single action).

An abstraction mapping M from A to B is a pair of functions, S and A, where $

maps states(A) to states(B) and A maps pairs (s, 7r), of states s of A and actions

7r of A enabled in s, to alt-seq(B).

6



Section 2.1: Safety

Given execution fragment e = s0irls1 ... of A, define ,I(e) as follows.

" If e = so, then M(e) = S(so). S

" Suppose e = so... si-lrisi, i > 0. If A(si_j, rri) is empty, then M(() =
M(so .. Sil). Iff A(si 1 , 7ri) = o ... tml.p,, then M(e) = A(So ... i _)

(pltl ... tminS(si). The tj are called interpolated states of M(e).

" If c is infinite, then M1 'e) is the limit of M(si0rsl .... si) as i increases without

bound.

We now define a particular kind of abst ractioa mapping, one tailored for show-
ing inductively that a certain predicate is an invariant of A, and that executions
of A map to (nontrivial) executions of B. (A predicate is a Boolean-valued func-

tion. If Q is a predicate on states(B), and S maps state s(A) to states(B), then
(Q o 5), applied to state s of A, is the predicate "Q is true in S(s)," and is also
written (Q(S(s)).) We give two sets of conditions on abstraction mappings, both of

which imply that executions map to executions, with the same sequence of external
actions. The first set of conditions applies when there is a single higher-level au-
tomaton immediately above. As formalized in Lemma 1, condition (2) ensures that.

tile oequcii,.s of cxtecin,, actions adiC tbh - and conditions (1) and (3) ensure
that executions map to executions, and that a certain predicate is an invariant for
the lower-level algorithm. A key point about this predicate is that it includes the

h)igher-level invarianit. Condition (1) is the basis step). Condition (3) is the inductive
step, in which the predicate, including the high-level invariant, may be used; part
(a) shows the low-level predicate is invariant, while parts (b) and (c) show execu-

tions map to executions, by ensuring that if there is no corresponding high-level
action, then the high-level state is unchanged, and if there is a corresponding high-

level action, then it is enabled in the previous high-level state and its effects are

mnirrored in the subsequient high-level state. Since executions miap to executions.

the high-level invariant, when colmposcd with the state mapping, is also invariant

for A.

Definition: Let A and B ue automata with the same external action signature. Let
M = (S. A) be an abstraction mapping from A to B, P be a predicate on states(A),
and Q be a predicate true of all reachable states of B. We say 4 simulates B via

A.M. P, and Q if the following three conditions are true.

(1) If s is it .4art(A), then

(a) P(.S) is true, and

7S



Section 2.1: Safety

(b) S(s) is in start(B).

(2) If .; is a state of A sMh that Q(S(.s)) and P(.s) are trie, aii, 7r is iiiy actiii of

A ,,nabh'd in .-, then A(.,, 7r)Ic.rt(B) 7rjt.rt(.A).

(3) Let (s', r, s) be a step of A such that Q(S(s')) and P(s') are true. Then

(a) P(s) is true,

(b) if A(s', 7r) is empty, then S(s) = S(s'), and

(c) if A(s', w) = iti ..tm- r,, then S(s')lt, ... ti_],mS(s) is an execu-

tion fragment of B.

The first lemma verifies that if A simulates B via Mvi, then M(e) is an execution

of B and a certain predicate is true of all states of c.

Lemma 1: If A simulates B via M = (S. A). P and Q, then the following are true

for any execution e of A.

(1) M(e) is an execution of B.

(2) (Q o S) A P is true in every state of c.

Proof: Let e = s0or 1 sI .... If (1) and (2) are true for every finite prefix e = so..

of e, then (1) and (2) are true for e. We proceed by induction on i. We need to

strt-iigthen the inductive hypothesis for (1) to be the following:

(1) .M(ei) is an execution of B and S(si) = t, where t is the final state in .(ej).

(Throughout this proof, "conditionis (1), (2) and (3)" refer to the conditions in

the definition of "simulates".)

Basis: i = 0. (1) M(e0) = S(.so). Since c0 is an execution of A, so is in

start(A). Condition (1b) implies that S,(so) is in start(B), so M(co) is an execution

of B. Obviously, the assertion about the final states is true.

(2) Condition (la) states that P is truo in so. Since S(so) is in .start(B), it is

a reachable state of B, and Q(S(so)) is truct.

Induction: i > 0. By the inductive hypothesis for (2), Q(S(,,,_- )) and P(si-I )

are true. Thus, conditions (3a), (3b) and (3c) are true.

(1) Let lM(c,-I) = to;lt 1 ... t, and 4(ti) = t0pltl ... t,,,. Obviously, ?1 > j.

8
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Section 2.1: Safety

Suppose in = j. Then M(e) = V(ci- 1 ) and is an execution of B by the 

inductive hypothesis for (1). We deduce that A(s,_. ri) is empty, so by condition
(3b), S(s ) = S(si 1), and by the inductive hypothesis for (1), S(.i_ ) =t.

Suppose m > j. By construction of M(ci), A(si-II 7i) =Pj+ltj+l ... ti-1 701,,

and t,, = S(si). By the inductive hypothesis for (1), S(si- ) = tj. By condition

(3c), tjpj+i ... Pntm is an execution fragment of B. Thus, M(ei) is an execution

of B. Obviously, the assertion about the final states is true.

W

(2) By the inductive hypothesis for (2), (Q o S) A P is true in every state of

ci, except (possibly) si. By condition (3a), P(si) is true. The final state in M(ci)

is S(si). Since, by part (1), M(ej) is an execution of B and S(sj) equals the final

state of ,M(ei), S(si) is a reachable state of B. By definition of Q, Q(S(si)) is

true. 0

Next we suppose that there are several higher-level versions, say B and B 2 , of

automaton A, each focusing on a different task. There are situations in which it is
impossible to show that A simulates B , without using invariants about B 2 's task,

and it is impossible to show that A simulates B2 without using invariants about

Bl's task. One could cast the invariants about B 2's task as predicates of A, and

use the previous definition to show A siu ulates B 1 , but this violates the spirit of
the lattice. Instead, we define a notion of simultaneously simulates, which allows

invariants about both tasks to be used in showing that A simulates B and B 2 .

The definition differs from simply requiring A to simulate B1 and A to simulate

B 2 in one important way: steps of A only need to be reflected properly in each

higher-level algorithm when all the higher-level invariants are true (cf. condition

(3)).

Definition: Let I be an index set. Let A and A,. r c I, be automata with the

same external action signature. For all ' C I, letM ,r = (Sr, Ar) be an abstraction

mapping from A to Ar, and let Q, be a predicate true of all reachable states of A,.

Let P be a predicate on states(A). We say A simultaneouly simulates {A, : r c I}
via {MIr : , C I}, P, and {Qr : r E I} if the following three conditions are true.

(1) If s is in start(A), then

(a) P(s) is true, and

(b) Sr(-s) is in start(A,.) for all r C I.

(2) If s is a state of A such that A, Q (,.(S,-(.)) and P(.s) are true, and 7r is any
action of 4 enabled in s then A,(,s, 7r)k 'f(Ar) =r<cx'(A) for all 7- e I.

9 1"Of
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Section 2.2: Liv(.i(,ss

(3) Let (s', 7r, s) be a step of A such that A,. Qr,(sr(.,)) and P(.') are tni. Theii

(a) P(s) is true,

(b) if Ar(S', 7r) is empty, then S,.(s) = S,.(s'), for all r C I, and

(c) if Ar(S', 7r) = ,oltl ... t '-pm, then S,.(),' )I t . , ,nSr( . is an (,X(,-

cution fragment of A, for all r E I. -l

The statement "A simultaneously simulates {AI. A2 } via {1,A. A4-. }. P and

{ QI, Q2 }" is weaker than the statement "A simulates -41 via l, P and Q 1, and

A simulates A 2 via M 2, P and Q2" because the hypotheses of conditions (2) and

(3) in the simultaneous definition require that a stronger predicate be true.

Lemma 2 shows that the safety properties of interest are still preserved.

Lemma 2: Let I be an index set. If A siunltaneously simulates {A, : r E I} via

{M, : r E1 }, P, and {Q,. : r E I}, where M, = (5,., A,.) for all 7- E I, then the

following are true of any execution e of A.

(1) Mr(e) is an execution of Ar, for all r C I.

(2) AEI(Qr oS,) A P is true in every state of c.

2.2 Liveness

The following notation is introduced to define the basic liveness notion, "equi-

table", and to verify that this definition has the desired properties.

We define an execution e = s0rIS... of autonaton A to satisfy S c (T,X),

where S and T are subsets of statc-.,(A) and X is a subset of states(A) X act A),

if for all i with si E S', there is a j - i such that either s, E T or (s, p+1, ) c X.

In words, starting at any state of . eventually either a st;,te in T is reached, or a

state-action pair in X is reached.

If M = (S,A) is an abstraction mapping from A to B, then for each locally-

controlled action 'p of B, we make the following definitions: E,, is the set of all

states s of A such that 'p is enabled in S(s); D,, is states(A) - E,; D, is the set of

all states t of B such that 'p is not enabled in t; X1, is the set of all pairs (s, r) of

states s of A and actions r of A such that Vp is in A(s, 7r); and X, is states(B) x {}.

Definition: Suppose M is an abstraction mapping from A to B. Let 'p be a locally-

controlled action of B. If every fair execution of A satisfies stotcs(A) ''. (D,, X ,),

then A is equitable for 'p via M-I. If A is equitable for -p via A4 foi every locally-

controlled action ' of B, then .4 is cquitable for B. El

10
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Section 2.2: Liveness

The next lemma motivates the equitable definition -- in the induced exezution
of B, if 'p is ever enabled, then eventually 'p either occurs or becomes disabled.

I

Lemma 3: Suppose A simulates B via M. Let 'p be a locally-controlled action of

B. If A is equitable for (p via M, then 4 (c) satisfies states(B) - (Dr,,,X), for

every fair execution e of A.

Proof: Let 4= (S,.A). Let e = s08 s| ... be a fair execution of A, and let

M(e) = topt .... For any i > 0, define index(i) to be j such that (so .... s,)

to ... t. Choose i > 0.

Case 1: ti is not interpolated. Choose any I be such that index(l) = i. Then 6
ti = S(sj), as argued in the proof of Lemma 1. Suppose there is an rn > 1 such that

s. c D.. Then there is a j = index(m) > i such that tj = S(sm ), and by definition

of D',, tj is in D' . Suppose there is an in > I such that (s, ,r,+l) c X,. Then

there is a j = index(m) >_ i such that ',j = ', by definition of X,,, and (tj, j+l)

is in X'

Case 2: ti is interpolated. Let i' be the smallest integer greater than i such All

that ti, is not interpolated. If either a state in D, or 'p occurs between i and i" in

M(e), then we are done. Suppose not. Then the argument in Case 1, applied to t,,

shows that eventually after ti,, and thus after ti, either a state in D, or (p occurs

in ,M(e). El

The next lenma is the analog of Lemma 3 for simultaneously simulates. (D,

and X, are defined with respect to A,4,..)

Lemma 4: Suppose A simultaneously simulates {A, : r G I} via {M, : r E I).

Let , be a locally-controlled action of r4 for sonc r. If A is equitable for ,: via

Air.- then A4,j) satisfies stotcs(B) '-* (D$, X,'), for every fair execu tion c of A.

The rest of this subsection describes three methods of verifying that A is eq-

uitable for action 'p of B. Lemma 5 describes the first method, which is to identify

an action of 4 that is essentially the "'saim," as '.

Lemma 5: Suppose .4 = (S. A) is an abstraction mapping from A to B. 'p is a

locally-controlled action of B. and p is a locally-controlled action of A such that, OK

for all reachable states .s of A.
N

(1) p is 'nn bld in .s if and onl" if 'p is ,unlb/cd in state S(s) of B. and

(2) if" p is enabled in ., thln 'p is inchil('d in A(,-,. p).

L1



Section 2.2: Liveness

Then A is equitable for p via .M.

Proof: Let c = so7rlsl ... be a fair execution of A. Choose i > 0. If v, wc

aP done. Sul)ose si C Ev. By assiniption, /, is ('na.bld in .S,. Sil(c c is fair, thi('1,'

exists j > i such that either 7r; = p, in which case A(sj_,7j) includes P, or else

p is not enabled in sj, in which case V is not enabled in 8(sj). Thus, ( satisfies

states(A) -+ (D,,X,). 11

The second method uses the following definition, which is shown in Lemma 6

to imply equitable.

Definition: Suppose M = (,S, A) is an abstraction mapping from A to B, If pQ is

a locally-controlled action of B, then we say A is progressive for V via M if there

is a set T of pairs (s, 4') of states s of A and locally-controlled actions 4 of A, and

a function v from states(A) to a well-founded set such that the following are true.

(1) For any reachable state s E E. of A, some action 4, is enabled in s such that

(s,4) is in T.

(2) For any step (s', 7r, s) of A, where s' is reachable and in E,, (s', 7r) V X., and

s E EV,
(a) v(s) < v(s'),

(b) if (s', 7-) E T, then v(s) < v(s'), and

(c) if (s', 7r) q T, 0 is enabled in s', and (s', 4) is in T, then 4' is enabled in .s

and (s, 0) is in TI.

Lemma 6: If A is progressive for y) via A4, then A is equitable for p via ,M.

Proof: Let M = (S, A). By assumption. p0 is a locally-controlled action of B. and

there exist T and v satisfying condP ions (1) "rnd (2) in tli,' defnition of "progres-

sive" .

Let C = 8071.s... be a fair execution of A. Choose i > 0. If si E D,, we are

done. Suppose si E Ef. Assume in contradiction that for all j > i, (sj, rj+i) X

and sj E E,. By condition (1), there is an action V, enabled in si such that (si, ")_

is in TI. By condition (2c). as long as (sj. rj+I ) V' T, 4, is enabled in sj+ 1 and

(Sj+l, VI) E 1P, for j > i. Since c is fair, there is il > i such that (si, 1 , 7ri ) C- .

By conditions (2a) and (2b), t(si, ) < v(si). Similarly, we can show that there is

I2 > i such that v(si,) < ,(. / ). We can continue this indefinitely, contradicting

the range of v being a well-founded set.

12



Section 2.2: Liveness

The next lemma demonstrates a third technique for showing that A is equitable

for locally-controlled action p of B, in a situation when there are multiple higher-

level algorithms. The main idea is to show that there is some action p of D that

is "similar" to p (cf. conditions (2) and (3)) such that C is progressive for p using

certain helping actions (cf. condition (4)), and A is equitable for all the helping

actions for p (cf. condition (5)). By "similar", we mean that if W is enabled in the

B-image of state s of A, then p is enabled in the D-image of the C-image of s; and

if p occurs in the D-image of the C-image of the pair (s', 7r), then p occuis in the

B-image of (s', ir). Condition (1) is needed for technical reasons. (For convenience.

we define abstraction function M applied to the empty sequence to be the empty

sequence. To avoid ambiguity, we add the superscript AB to E., D., and X, when

they are defined with respect to the abstraction function from A to B.)

Lemma 7: Let A, B, C and D be automata such that MAB = (SAB, AAB) is an

abstraction function from A to B, and similarly for MAC and MCD. Let V be a

locally-controlled action of B. Suppose the following conditions are true.

(1) MAC(e) is an execution of C for every execution e of A.

(2) There is a locally-controlled action p of D such that for any reachable state
AB CD

sofA, if s E EE , then SAC(S) E E .

(3) If (s', 7r, s) is a step of A, s' is reachable, and p is in MCD(M AC(S' is)),

then p is in AAB(S', r).

(4) C is progressive for p via. MCD, using the set T. and the function vP.

(5) A is equitable for 4 via MAC, for all actions 0 of C such that (t, ?) E p
for some state t of C.

Then A is equitable for o via MAB.

Proof: Let e = sozrtsl ... be a fair execution of A. Let MAC(e) = to pOtl .... By

assumption (1), trn is a reachable state of C for all m > 0. For any i > 0, define

index(i) to be m such that MAC(soir ... si) = too, ... ti.

Choose i > 0. If s, E DAB, wc are done. Suppose si E EAB. Assume in

contradiction that, for all j > i, (sj, irj+t) V' X A B and 8j E E A . Let In = index(i).

By assumption (2), there is a locally-controlled action p of D such that t,, - EP
for all n > m. By assumption (3), (t ,,," ,) V X C O for all n > in.

13



Section 3: Problem Statement

By assumption (4), C is progressive for p via MCD, using set %P and function

vP. Thus, there is a locally-controlled action V, of C enabled in SAC(Si) = t, such

that (ti,4) QP. By assumption (5), A is equitable for V) via. MAc-. Since is fail*

and si ( E"'" by Lemma 3 there exists i i such tiat cit'her (.s , 7r, ) ( .X

or si, E DAC. Let ml = index(ii).

Case 1: (s,_l,7ri,) E XA . Then AAc(si,.-,7ri) includes ,. Since t, is

reachable, t, E EC D , and (tn,n+l) ' XCD for all n > m, we conclude that

vp(tm,) < VP(tm), by parts (2a) and (2b) of the definition of "progressiv?".

Case 2: sil E D AC. Since t, is reachable, t,, E and (tnn+)VXD

for all n > m, by part (2c) of the definition of " progressive", the only way 0 can

go from enabled in t, to disabled in ti,, is for some action in qfp to occur between

p m+j and o, .By part (2b) of the definition of "progressive", Vp(t,) < vp(tin).

Similarly, we can show that there exists i 2 > ii such that vp(SAC(Si,)) <

vp(SAc(sj )). We can continue this indefinitely, contradicting the range of vp being

a well-founded set. 0

2.3 Satisfaction

The next theorem shows that our definitions of simulate and equitable are

sufficient for showing that A satisfies B.

Theorem 8: If A simulates B via M, P and Q and if A is equitable for B via M,

then A satisfies B.

Proof: We must show that for any fair execution c of A, there is a fair execution

f of B such that sched(e)lext(A) = sched(f)Iext(B). Given e, let f be M(e). We

verify that M(e) is a fair execution of B with the desired property. Lemma 1, part

(1), implies that f is an execution of B. Choose any locally-controlled action p of

B. By Lemma 3, if W is enabled in any state of f, then subsequently in f. either

a state occurs in which p is not enabled, or p occurs. Thus, f is fair. Finally,

sched(e)Iext(A) = sched(f)Iext(B) because of condition (2) in the definition of
"simulates". [0

The next theorem is the analog of Theorem 7 for simultaneously simulates.

Theorem 9: Let I be an index set. If A simultaneously simulates {A, : r E I} via

{Mr : r E I}, P and {QWr : r E I, and if A is equitable for A,. via M,. for some

r E I, then A satisfies Ar.

14



Section 3: Problem Statement

3. Problem Statement

We define the minimum spanning tree problem as an external schedule module.

For the rest of this paper, let G be a connected undirected graph, with at

least two nodes and for each edge, a unique weight chosen from a totally ordered

set. Nodes are V(G) and edges are E(G). For each edge (p, q) in E(G), there are

two links (i.e., directed edges), (p, q) and (q,p). The set of all links of G is denoted

L(G). The set of all links leaving p is denoted Lp(G). The weight of (p, q) is denoted

wt(p,q); wt((p, q)) is defined to be wt(p,q); and wt(nil) is defined to be -o.

The following facts about minimum spanning trees will be useful.

Lemma 10: (Property 2 in [GHS]) The minimum spanning tree of G is unique.

Proof: Suppose in contradiction that T and T 2 are both minimum spanning trees

of G and T1 -T2. Let e be the minimum-weight edge that is in one of the trees

but not both. Without loss of generality, suppose e is in E(T). The set of edges

{e} U E(T 2) must contain a cycle, and at least one edge, say e', of this cycle is not

in E(T). Since e 7 e' and e' is in one but not both of the trees, wt(e) < wt(e').

Thus replacing e' with e in E(T 2 ) yields a spanning tree of G with smaller weight

than T'2, contradicting the assumption. -

Let T(G) be the (unique) minimum spanning tree of G.

An external edge (p, q) of subgraph F of G is an edge of G such that p E V(F)

and q V V(F).

Lemma 11: (Property 1 in [GHS]) If F is a subgraph of T(G), and e is the

minimum-weight external edge of F, then e is in T(G).

Proof: Suppose in contradiction that e is not in T(G). Then a cycle is formed by

e together with some subset of the edges of T(G). At least one other edge e' of this

cycle is also an external edge of F. By choice of e, wt(e) < wt(e'). Thus, replacing

C' with e in the edge set of T(G) produces a spanning tree of G with smaller weight

than T(G), which is a contradiction. 5]

The MST(G) problem is the following external schedule module. Input actions

are {Start(p) : p E V(G)J. Output actions are {InTree(1),NotlnTree(l) : E
L(G) }. Schedules are all sequences of actions such that

e no output action occurs unless an input action occurs;

15



Section 4: Prcof of Correctness

* if an input action occurs, then exactly one output action occurs for each I E

L(G);

9 if In Tree((p, q)) occurs, then (p, q) is in T(G): and

e if Notln Tree((p, q)) occurs, then (p,q) is not in T(G).

4. Proof of Correctness

The verification of Gallager, Humblet and Spira's minimum-spanning tree al-

gorithm [GHS] uses several automata, arranged into a lattice as in Figure 2.

HI

COM

GO

TAR DC NOT CON

GHS

Figure 2: The Lattice

Each element of the lattice is a complete algorithm. However, the level of detail

in which the actions and state of the original algorithm are represented varies.

Working down the lattice takes us from a description of the algorithm that uses

global information about the state of the graph, and powerful, atomic actions, to a

fully distributed algorithm, in which each node can only access its local variables.

and many actions are needed to implement a single higher level action. A brief

overview of each algorithm is given below; a fuller description of each appears later.

HI is a very high-level description of the algorithm, and is easily shown in b

Section 4.1 to solve the MST(G) problem. GHS is the detailed algorithm from

16



Section 4: Proof of Correctness

[GHS]. We show a path in the lattice from GHS to HI, where each automaton in
the path satisfies the automaton above it. By transitivity of satisfaction, then GHS
will have been shown to solve MST(G). ,

The essential feature of the state of HI is a set of subgraphs of G, initially

the set of singleton nodes of G. Subgraphs combine, in a single action, along
minimum-weight external edges, until only one subgraph, the minimum spanning

tree, remains.

The COM automaton introduces fragments, each of which corresponds to a
subgraph of HI, plus extra information about the global level and core (or identity)

of the subgraph. Two ways to combine fragments are distinguished, merging and
absorbing, and two milestones that a fragment must reach before combining are
identified. The first milestone is computing the minimum-weight external link of

the fragment, and the second is indicating readiness to combine.

The GC automaton expands on the process of finding the minimum-weight
external link of a fragment, by introducing for each fragment a set testset of nodes
that are participating in the search. Once a node has found its local minimum-

weight external link, it is removed from the testset.

TAR and DC expand on GC in complementary ways. DC focuses on how the
nodes of a fragment cooperate to find the minimum-weight external link of the whole

fragment in a distributed fashion. It describes the flow of messages throughout
the fragments: first a broadcast informs nodes that they should find their local
minimum-weight external links, and then a convergecast reports the results back.
In contrast, TAR is unconcerned with specifying exactly when each node finds its
local minimum-weight external link, and concentrates on the details of the protocol

performed by a node to find this link. S

NOT is a refinement of COM that expands on the method by which the global
level and core information for a fragment is implemented by variables local to each
node. Messages attempt to notify nodes of the level and core of the nodes' current

fragment.

CON, an orthogonal refinement of COM, concentrates on how messages are
used to implement what happens between the time the minimum-weight external
link of an entire fragment is computed, and the time the fragment is combined with

another one.

17
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Section 4.1: HI Solves MST(G)

Finally, the entire, fully distributed, algorithm is represented in automaton

GHS. It expands on and unites TAR, DC, NOT and CON.

The path chosen through the lattice is HI, COM, GC, TAR, GHS. Why
this path? Obviously, GHS must be shown to satisfy one of TAR, DC, NOT

and CON. However, it cannot be done in isolation; that is, invariants about the
other three are necessary to show that GHS satisfies one. (As mentioned in Section

2.1, the invariants about the other three could be made predicates about GHS,

but this approach does not take advantage of abstraction.) Thus, we show that

GHS simultaneously simulates those four automata. To show this, however, we

need to verify that certain predicates really are invariants for the four. In order to

do this, we show that TAR and DC (independently) simulate GC, and that NOT

and CON (independently) simulate COM. Likewise, in order to show these facts,
we need to know that certain predicates are invariants of GC and COM, and the

way we do that is to show that GC simulates COM, and that COM simulates HI.

Thus, it is necessary to show safety relationships along every edge in the lattice.

The liveness relationships only need to be shown along one path from GHS to

HI. After inspecting GHS and the four automata directly above it, we decided on
pragmatic grounds that it would be easiest to show that GHS is equitable for TAR.

One consideration was that the output actions have exactly the same preconditions
in GHS and in TAR, and thus showing GHS is equitable for those actions is trivial.

Once TAR was chosen, the rest of the path was fixed.

First, the necessary safety properties are verified in Section 4.2. We show that

COM simulates HI (Section 4.2.1), that GC simulates COM (Section 4.2.2), that
TAR simulates C (Section 4.2.3), that DC simulates GC (Section 4.2.4), that

NOT simulates COM (Section 4.2.5), that CON simulates COM (Section 4.2.6),

and that GHS simultaneously simulates TAR, DC, NOT and CON (Section 4.2.7).

Section 4.3 contains the liveness arguments. To show the desired chain of

satisfaction, we show that COM is equitable for HI (Section 4.3.1), that GC is

equitable for COM (Section 4.3.2), that TAR is equitable for GC (Section 4.3.3),
and that GHS is equitable for TAR (Section 4.3.6). In Section 4.3.6, the technique

of Lemma 7 is used in several places; thus we need to show that DC is progressive
for an action of GC (Section 4.3.4), and that CON is progressive for several actions

of COM (Section 4.3.5).

Section 4.4 puts the pieces together to show that GHS solves MST(G).

18
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Section 4.1: HI Solves MST(G)

4.1 HI Solves MST(G)

The main feature of the HI state is the data structure FST (for "forest"),

which consists of a set of subgraphs of G, partitioning V(G). The idea is that

the subgraphs of G are connected subgraphs of the minimum spanning tree T(G).

Two subgraphs can combine if the minimum-weight external link of one leads to

the other. The awake variable is used to make sure that no output action occurs

unless an input action occurs. The answered variables are used to ensure that at

most one output action occurs for each link. InTree((p, qj) can only occur if (p, q) is
already in a subgraph, or is the minimum-weight external edge of a subgraph (i.e.,

is destined to be in a subgraph). NotInTree((p,q)) can only occur if p and q are in

the same subgraph but the edge between them is not.

Define automaton HI (for "High Level") as follows.

The state consists of a set FST of subgraphs of G, a Boolean variable

answered(l) for each I E L(G), and a Boolean variable awake.

In the start state of HI, FST is the set of single-node graphs, one for each

p E V(G), every answered(l) is false, and awake is false.

Input actions:

* Starg(p), p E V(G)

Effects:
awake := true

Output actions:

e InTree((p,q)), (p,q) E L(G)

Preconditions:

awake -= true

(p., q) G F or (p, q) is the minimum-weight external edge of F,
for some F E FST

answered((p, q)) = false

Effects:

answered((p, q)) := true

* NotIv Trc(((p, q)), (p, q) E L(G)

Preconditions:

awake =true

19
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Section 4.1: HI Solves MST(G)

p, q E F and (p, q) V F, for some F E FST

answered((p, q)) false

Effects:

answered((p,q)) := true

Internal actions:

Combine(F, F', e), F, F' E FST, e c E(G)

Preconditions:

awake = true

F# F'

- is an external edge of F

e is the minimum-weight external edge of F'

Effects:

FST := FST - {F,F'} U {F U F' U e}

Define the following predicates on states(HI). (A minimum spanning forest

of G is a set of disjoint subgraphs of G that span V(G) and form a subgraph of a

minimum spanning tree of G.)

* HI-A: Each F in FST is connected.

* HI-B: FST is a minimum spanning forest of G.

Let PHI = HI-A A HI-B. HI-B implies that the elements of FST form a par-

tition of V(G). Lemma 10 and HI-B imply that FST is a subgraph of T(G).

Theorem 12: HI solves the MST(G) problem, and PHI is true in every reachable

state of HI.

Proof. First we show that PHI is true in every reachable state of HI. If s is a,

start state of HI, then PH1 is obviously true. Suppose (s', 7r, s) is a step of HI and

PjijI is true in s'. If 7r 5 Combine(F, F', e), then, since FST is unchanged, PHI is

obviously true in s as well.

Suppose 7r = Combine(F, F', r.). By the precondition, F : F', e is the

minimum-weight external edge of F', and e is an external edge of F in s'. By

HI-A, F and F' are each connected in s'; thus, the new fragment formed in s by

joining F and F' along e is connected, and HI-A is true. Since by HI-B and Lemma

10, F and F' are subgraphs of T(G), and since by Lemma 11 e is in T(G), the new

FST is a minimum spanning forest of G, and HI-B is true.

20
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We now show that HI solves MST(G). Let e be a fair execution of HI. The
use of the variable awake ensures that no output action occurs in e unless an input

action occurs in e. The use of the variables answered(l) ensures that at most one
output action occurs in e for each link 1. Suppose InTree((p,q)) occurs in e. Then
in the preceding state, either (p, q) is in F or (p, q) is the minimum-weight external

edge of F, for some F E FST. By HI-B and Lemmas 10 and 11, (p,q) is in T(G).
Suppose NotlnTree((p, q)) occurs in e. Then in the preceding state, p and q are in

F and (p, q) is not in F, for some F E FST. By HI-A, there is path from p to q in
F. By HI-B and Lemma 10, this path is in T(G). Thus (p, q) cannot be in T(G),
or else there would be a cycle.

Suppose an input action occurs in e. We show that an output action occurs in
for each link. Let e = s0 7r1sI .... Obviously, 7r is an input action. Only a finite

number of output actions can occur in e. Choose ,n such that rm is the last output
action occurring in e. (Let m = 1 if there is no output action in e.) It is easy to
see that s, = si for all i > m. Since an input action occurs in e before s, awake
= true in s,. IFST = 1 in s,, because otherwise some Combine(F, F', e') action
would be enabled in sn, contradicting e being fair. Let FST = {F}. By HI-A and

HI-B, F = T(G) in sn. Furthermore, answered(l) is true in s,m for each 1, because
otherwise some output action for I would be enabled in si, contradicting e being
fair. Yet the only way answered(l) can be true in sm is if an output action for 1
occurs in e. 0

4.2 Safety

Each algorithm in the lattice below HI is presented in a separate subsection.
Each subsection is organized as follows. First, an informal description of the algo-
ritlim is given, together with a discussion of any particularly interesting aspects.
T hein comes a description of the state of the automaton, both explicit variables, and _
derived variables (if any). A derived variable is a variable that is not an explicit
element of the state, but is a function of the explicit variables. We employ the con-
vention that whenever the definition of a derived variable is not unique or sensible,

then the derived variable is undefined. The actions of the automaton are specified
next. Then predicates to be shown invariant for this automaton are listed. The

abstraction mapping to be used for simulating the higher-level automaton is de-
fined next. All our state mappings conform to the rule that variables with the same

name have the same value in all the algorithms. The only potential problem that
might arise with this rle is if a derived variable is mapped to an explicit variable,
but the derived variable is undefined. Although we will prove that this situation
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Section 4.2.1: COM Simulates HI

never occurs in states we are interested in, for completeness of the definition of

state mapping one can simply choose some default value for the explicit variable.

Often it is useful to derive some predicates about this automaton's state that follow

from the invariant for this automaton and the higher-level one; these predicates

are true of any state of this automaton satisfying the invariant and mapping to a

reachable state of the higher-level algorithm. The proof of simulation completes the

subsection.

4.2.1 COM Simulates HI

The COM algorithm still takes a completely global view of the algorithm,

but some intermediate steps leading to combining are identified, and the state is

expanded to include extra information about the subgraphs. The COM state con-

sists of a set of fragments, a data structure used throughout the rest of the lattice.

Each fragment f has associated with it a subgraph of G, as well as other informa-

tion: level(f), core(f), minlink(f), and rootchanged(f). Two milestones must be

reached before a fragment can combine. First, the ComputeMin(f) action causes

the minimum-weight external link of fragment f to be identified as minlink(f), and

second, the ChangeRoot(f) action indicates that fragment f is ready to combine,

by setting the variable rootchanged(f). This automaton distinguishes two ways that

fragments (and hence, their associated subgraphs) can combine. The Merge(f,g)

action causes two fragments, f and g, at the same level with the same minimum-

weight external edge, to combine; the new fragment has a higher level and a new

core (i.e., identifying edge). The Abeorb(f, g) action causes a fragment g to be en-

gulfed by the fragment f at the other end of minlink(g), provided f is at a higher

level than g.

Define automaton COM (for "Common") as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:

* subtree(f), a subgraph of G;

" core(f). an edge of G or nil;

" level(f), a nonnegative integer;

* minlink(f), a link of G or nil;

" rootchanged(f), a Boolean.
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The state also contains Boolean variables, answered(l) one for each I E L(G). and

Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G); for

fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, levcl(f) .0.

minlink(f) is the minimum-weight link adjacent to p, and rootchanged(f) is false.

Each answered(l) is false and awake is false.

Two fragments will be considered the same if either they have the same single-

node subtree, or they have the same nonnil core.

We define the following derived variables.

* For node p, fragment(p) is the element f of fragments such that p is in

subtree(f).

* A link (p, q) is an external link of p and of fragment(p) if fragment(p) #_.
fragment(q), otherwise the link is internal.

* If minlink(f) (p, q), then minedge(f) is the edge (p, q), minn-de(f) = p, and

root(f) is the endpoint of core(f) closest to p.

* If (p, q) is the minimum-weight external link of fragment f, then mw-minnode(f)

= p and mw-root(f) is the endpoint of core(f) closest to p.

* subtree(p) is all nodes and edges of subtree(fragment(p)) on the opposite side

of p from core(fragment(p)).

* q is a child of p if q E subtree(p) and (p, q) E subtree(fragment(p)).

Input actions:

S 5tart(p), p E V(G)

Effects:

awake := true

Output actions:

e InTree((p,q)), (p,q) E L(G)

Preconditions:
awake = true

(p, q) E subtree(fragment(p)) or (p, q) = minlink(fragment(p))
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Section 4.2.1: COMl Simulates HI

(Lttsuered((p, q)) =false

Effects:

answered((p,q)) :=true

9 NotlInTree((p,q)), (p.,q) e L(G)
Preconditions:

fragrni(p) =fragment(q) and (1), q) ~'subtree(frugrncnt(p))

ansivcred((p,q)) false

Effects:

ariswe?,ed((p,q\): true

Internal actions:

" ComputeMin(f), f C- fragmenbt

Preconditions:

minlink(f) =ni

I s the minimumn--weight external link off

level( f) :5 levcl(fragment( tarqgct( 1)))

Effects:

mi'nli'nk(f) := I

" ChangeRooi(f), f E fragments

Preconditions:

awake = true

rootchangqcd(.f) =false

minlink(f) 5# nil1

Effects:

rootchanged(f) :=- true

" Merge( f.g), f. g E fragmcmnts
P recond itions:

rontchangcdl(f) = rootchanged(q) true

minedge(f) =mincdge(q)

Effects :

add aiC (ewelincilt It to fragmnixnbi

sitbtrepr( h) := vitbtrec(f) U subtfrcc(g) U Tnnedq!( f')

core(hi) 22 mjndge(f)

levcl( h) :=levil( f) +- 1

rninlink(h) := mlJ
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rootchanged(h) := false

delete f and g from fragments

* Absorb(f,g), f,g E fragments

Preconditions:

rootchanged(g) = true

level(g) < level(f)

fragment(target(minlink(g))) = f

Effects:

subtree(f) := subtree(f) U subtree(g) U minedge(g)

delete g from fragments

Define the following predicates on states of COM. (All free variables are uni-

versally quantified.)

* COM-A: If minlink(f) = 1, then I is the minimum-weight external link of f,

and level(f) < level(fragment(target(l))).

* COM-B: If rootchanged(f) = true, then minlink(f) # nil.

o COM-C: If awake = false, then minlink(f) 4 nil, rootchanged(f) = false, and

subtree(f) = {p} for some p.

* COM-D: If f 5 g, then subtree(f) # subtree(g).

* COM-E: If subtrce(f) = {p} for some p, then mmnlinIf) :A nil.

* COM-F: If Inodes(f)l = 1, then level(f) = 0 and core(f) = nil; if Inodes(f) >
1, then level(f) > 0 and core(f) C subtree(f).

Let Pco,1l be the conjunction of COM-A through COM-F.

In order to show that COM simulates HI, we define an abstraction mapping

MI = (S , A,) from COM to HI. Define the function S1 fr )m states(COM) to
states(HI) as follows. In conformance with our convention (cf. the beginning of

Section 4.2), the values of awake and answered(l) (for all 1) in SI(s) are the same
as in s. The value of FST in SI(s) is the multiset {subtree(f) : f E fragments}.

Define the function A 1 as follows. Let s be a state of COM and r an action
of CO! enabled in s.

* If r Start(p), InTree(l), or NotluTree(l). then AI(s, 7r) 7r.
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* If 7r = ComputeMin(f) or ChangeRoot(f), then A,(s, r) is empty.

" If r = Merge(f,g) or Absorb(f,g), then A,(s,,r) = Combine(F, F, e). where

F = subtree(f) in s, F' = subtree(g) in s, and e = minedgqe(g) in s. S

The following predicate is true in every state of COM satisfying (PHI c SI) A

PCOM. (I.e., it is deducible from PCOM and the HI predicates.)

* COM-G: The multiset {subtree(f) : f E fragments} forms a partition of V(G),

and fragment(p) is well-defined.

Proof: Let s be a state of COM satisfying (PjIj o S ) A PCOM. In Si(s), FST -

{subtree(f): f E fragments}. By HI-B, FST forms a partition of V(G). By COM- S
D, the multiset {subtree(f) : f E fragments I-- FST, and thus it forms a partition
of V(G). Consequently, fragment(p) is well-defined.

Lemma 13: COM simulates HI via MI, PCOM, and PHI.

Proof: By inspection, the types of COM, HI, M, and PCOM are correct. By

Theorem 12, PHI is a predicate true in every reachable state of HI.

(1) Let s be in start(COM). Obviously, PCOM is true in s, and Si(s) is in

start(HI).

(2) Obviously, Ai(s, 7r)jext(HI) = 7rlext(COM) for any state s of A.

(3) Let (s', 7r, s) be a step of COM such that PHI is true of S, (s') and PCOM

is true of s'. We consider each possible value of 7r.

i) r is Start(p), InTree(l), or NotInTree(l). AI(s',7r) = 7r. Obviously,

PCOM is true in s, and Si(s')rSj(s) is an execution fragment of HI.

ii) 7r is ComputeMin(f) or ChangeRoot(f). A, (s', 7r) is empty. Obviously.

S(s') = Si(s). Obviously, COM-A, COM-B, COM-D and COM-F are true in s.
By COM-C for ComputeMin(f) and by precondition for ChangeRoot(f), awake =
true in s', and also in s; thus, COM-C is true in s.

Obviously, COM-E is true in s for any fragment f' # .f. If 7r = ComputeMin(f),

then minlink(f) # nil in s, and COM-E is vacuously true in s for f. If 'i =-

ChangeRoot(f), then by COM-B, rninlink(f) # nil in s' and also in s, so COM-E
is vacuously tiue in s for f.
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iii) 7r is Merge(fg).

(3c) Ai(s', 7r) = Combine(F, F', e), where F = subtree(f) in s', = subtrec(g)

in s', and e - minedge(g) in s', for some fragments f and g.

Claims about s':

1. f # g, by precondition.

2. rootchanged(f) = rootchanged(g) = true, by precondition.
3. minedge(f) = minedge(g), by precondition.

4. awake = true, by Claim 2 and COM-C.

5. minedge(f) : nil and minedge(g) A nil, by Claim 2 and COM-B
6. minlink(f) is an external link of f, by COM-A and Claim 5.

7. minlink(g) is the minimum-weight external link of g, by COM-A and Claim 5.

Let F = subtree(f), f' = subtree(g) and e = minedge(g).

Claims about St(s'): (All depend on the definition of S1.)

8. awake = true, by Claim 4.

9. F # F', by Claim 1 and COM-D.
10. e is an external edge of F, by Claims 3 and 6.

11. c is the minimum-weight external edge of F', by Claim 7.

By Claims 8 through 11, Combine(F, F', c) is enabled in S 1 (s'). Obviously, its

effects are mirrored in Si(s).

(3a) More claims about s':

12. level(f) > 0, by COM-F.

13. subtree(f') and subtree(g') are disjoint, for all f' # g', by COM-G.

Claims about s:

14. subtree(h) = subtree(f) U subtree(g) U minedge(f), by code.

15. core(h) = minedge(f), by code.

16. level(h) = level(f) + 1, by code.

17. minlink(h) = nil, by code.

18. rootchanged(h) = false, by code.

19. f and g are removed from fragments, by code.

20. ,.,,ak,: = true, by Claim 4.

21. subtrec(f') and subtrec(g') are disjoint, for all f' # g', by Claims 13, 14 and 19.
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22. Inodes(h)l > 1, by Claim 14.

23. level(h) > 1, by Claims 12 and 16.

24. core(h) E subtree(h), by Claims 14 and 15.

COM-A is vacuously true for h by Claim 17. COM-B is vacuously true for h

by Claim 18. COM-C is vacuously true by Claim 20. COM-D is true by Claim 21.

COM-E is vacuously true for h by Claim 22. COM-F is true for h by Claims 22, 23

and 24.

iv) 7r is Absorb(fg).

(3c) A,(s', r) = Combine(F,F',e), where F = subtree(f) in s', F= subree(g)

in s', and e = minedge(g) in s', for some fragments f and g. S

Claims about s':

1. rootchanged(g) = true, by precondition.

2. level(g) < level(f), by precondition.

3. fragment(target(minlink(g))) = f, by precondition.

4. f # g, by Claim 2.

5. minlink(g) is an external link of f, by Claims 3 and 4.

6. minlink(g) € nil, by Claim 3.

7. minlink(g) is the minimum-weight external link of g, by Claim 6 and COM-A.

8. awake = true, by Claim 1 and COM-C.

Let F = subtree(f), F' = subtrec(g) and e = minedge(g).

Claims about SI(s'): (All depend on the definition of S1 .)

9. awake = true, by Claim 8.

10. F # F', by Claim 4 and COM-D.

11. e is an external edge of F, by Claim 5.

12. e is the minimum-weight external edge of F', by Claim 7.

By Claims 9 through 12, Combine(F, F', e) is enabled in S (s'). Obviously, its

effects are mirrored in SI(s).

(3a) COM-A: If minlink(f) = nil in s'. then the same is true in s, and COM-A

is vacuously true for f. Suppose minlink(f) = I in s'. Let f' = fragment (target(1)).

More claims about s':
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13. level(f) _ level(f'), by COM-A.

14. f' : g, by Claims 2 and 13.

15. minedge(f) # minedge(g), by Claim 14.

16. minlink(f) is the minimum-weight external link of f, by COM-A.
17. If e' / minedge(g) is an external edge of g, then wt(e') > wt(minedge(f)). Pf:

wt(e') > wt(minedge(g)) by Claim 7, and wt(minedge(g)) > wt(minedge(f)) by

Claims 5, 15 and 16.

Since minlink(f) is the same in s as in s', Claims 16 and 17 imply that in s,

mznlink(f) is the minimum-weight external link of f. The only fragment whose level
changes in going from s' to s is g (since g disappears). Thus, Claim 14 implies that

in s, level(f) < level(f'). Finally, COM-A is true in s.

The next claims are used to verify COM-B through COM-F.

More claims about s':

18. subtree(f') and subtree(g') are disjoint, for all f' 5 g', by COM-G.
19. level(g) > 0, by COM-F.

20. level(f) > 0, by Claims 2 and 19.

21. Inodes(f)[ > 1, by Claim 20 and COM-F.
22. core(f) E subtree(f), by Claim 21 and COM-F.

Claims about s:

23. awake = true, by Claim 1.

24. subtree(f) in s is equal to subtree(f) U subtree(g) U minedge(g) in s', by code.

25. subtree(f') and subtree(g') are disjoint, for all f' : g', by Claims 18 and 24.

26. Inodes(f)l > 1, by Claims 21 and 24.

27. level(f) > 0, by Claim 20.

28. core(f) E subtree(f), by Claims 22 and 24.

COM-B is unaffected. COM-C is vacuously true by Claim 23. COM-D is true
by Claim 25. COM-E is vacuously true for f by Claim 26. COM-F is true for f by

Claims 26, 27 and 28. 5

Let PCOM = (PHI o S) A PCOM.

Corollary 14: P()'oA, is true in livaly r,'e'Imbh state of COM.

Proof: By Lemmas 1 and 13. 0
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4.2.2 GC Simulates COM

The GC automaton expands on the process of finding the minimum-weight

external link of a fragment, by introducing for each fragment f a set testset(f) of

nodes that are participating in the search. Once a node in f has found its minimum-

weight external link, it is removed from testset(f). A new action, TestNode(p), is

added, by which a node p atomically finds its minimum-weight external link -
however, the fragment at the other end of the link cannot be at a lower level than

p's fragment in order for this action to occur. The new variable acemin(f) (for
"accumulated minlink") stores the link with the m-nimimn weight over all links

external to nodes of f no longer in testset(f). ComputeMin(f) cannot occur until
testset(f) is empty. Whcii an Absorb(f,g) action occurs, all the nodes formerly in

g are .Lded to testset(f) if and only if the target of minlink(g) is in testset(f). This
version of the algorithm is still totally global in approach.

Define automaton GC (for "Global ComputeMin") as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:

* subtree(f), a subgraph of G;

" core(f), an edge of G or nil;

" level(f), a nonnegative integer;

" minlink(f), a link of G or nil;

" rootchanged(f), a Boolean;

* testset(f), a subset of V(G); and

* accmin(f), a link of G or nil.

The state also contains Boolean variables, answered(l), one for each I E L(G), and

Boolean variable awake.

In the start state of COAL fragments has one element for each node in V(G);

for fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) =
0, minlink(f) is the minimum-weight link adjacent to p, rootchanged(f) is false,

testset(f) is empty, and accmin(f) is nil. Each answered(l) is false and awake is

false.
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Input actions:

* Start(p), p E V(G)

Effects:

awake := true

Output actions:

" InTree((p,q)), (p,q) C L(G)

Preconditions:

awake = true

(p, q) E subtree(fragment(p)) or (p, q) minlink(fragment(p)) S

answered((p, q)) = false

Effects:

answered((p,q>) := true

" NotlnTree((p,q)), (p,q) E L(G)

Preconditions:

fragment(p) = fragment(q) and (p, q) V subtree(fragment(p))

answered((p, q)) false

Effects:

answered((p,q)) := true

Internal actions:

" TestNode(p), p E V(G)

Preconditions:

- let f = fragment(p) -,

pE testset(f)
if (p, q), the minimum-weight external link of p, exists

then level(f) <_ level(fragment(q))
Effects:

testset(f) := testset(f) - {p}

if (p, q), the minimum-weight external link of p, exists

and wt(p, q) < wt(accmin(f))
then accmin(f):= (p, q)

" ComputeMin(f), f C- fragments

P r(,('( )H(li t io)ns:

nminik( f ) = 3il
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accmin(f) :A nil
tests et(f) 0

Effects:

mrnlink(f) :=accrnin(f)

accmin(f) :=nil

* ChangeRoot(f), f E fragments
Preconditions:

awake = true

rootchanged(f) =false

minlink(f) k nil

Effects:

rootchanged(f) := true

0 Merge(f,g), f,g E fragments

Preconditions:

f :Ag
rootchanged(f) = rootchanged(g) =true

manedge(f) = nincdgc(;) -6 nil

Effects:

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)

core(h) :=minedge(f)

level(h) :=levelkf) + 1

m2nlink(h) := nil

rootchanged(h) := false

testset(h) :=nodes(h)

accmin(h) :=nil

delete f and g from fragments

*Absorb(f,g), f,9 E fragments

Preconditions:

rootchanged(g) = true

level(g) < level(f)

- let p = target( minlink (g))

fragment(p) = f
Effects:

.!ubtree(f) := subtree(f) U subtree(g) U minedge(g)

if p E testset(f) then testset(f) := testset(f) U testset(g)
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delete g from fragments

Define the following predicates on the states of GC. (All free variables are

universally quantified.)

* GC-A: If accmin(f) = (p,q), then (p,q) is the minimum-weight external link

of any node in nodes(f) - testset(f), and level(f) level(fragment(q)).

@ GC-B: If there is an external link of f, if minlink(f) = nil, and if testset(f) =

0, then accmin(f) # nil.

* GC-C: If testset(f) 5 0, then minlink(f) = nil.

Let PGc = GC-A A GC-B A GC-C.

In order to show that GC simulates COM, we define an abstraction mapping

M 2 = (S 2 , A 2 ) from GC to COM. Define the function $2 from states(GC) to

states(COM) by simply ignoring the variables accmin(f) and testset(f) for all

fragments f when going from a state of GC to a state of COM.

Define the function A 2 as follows. Let s be a state of GC and 7r an action of GC

enabled in s. If 7r = TestNode(p), then A 2 (s,7r) is empty. Otherwise, A 2 (s,7r) = 7.

Recall that PCOAl = (PHI o Si) A PCoM. If PbOM(S2(s)) is true, then the

COM predicates are true in 32(s), and the HI predicates are true in 81(82(s)).

Lemma 15: GC simulates COM via M 2 , PGc, and PCOM"

Proof: By inspection, the types of GC, COM, M 2 , and PGC are correct. By

Corollary 14, PCOM is a predicate true in every reachable state of (70M.

(1) Let s be in start(GC). Obviously, PGc is true in s, and S 2 (s) is in a
start(CO Al).

(2) Obviously, A 2(.s, r)jext(COMl) = 7rlext(GC).

(3) Let (s',7r,s) be a step of GC such that P5oM is true of S2(s') and PGC is

true of s'.

i) , is Start(p), InTree(l), NotlnTree(l), or ChangeRoot(f). Obviously,

S-2(.,')wr, 2 (.-) is an exerttion fragment of COM, ind P0 (" is true in .,.

ii) r is ComputeMin(f).
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(3a) Obviously, PGc is still true in s for any f'#f C-A is vacuously true

for f in s, since accmin(f) is set to nil. GC-B is vacuously true for f in S, since

minlink(f) 34 nil. By COM-C, awake = true in 8 2 (s') and thus in s'; the same is

truc in s, so GC-C(a) is true in s for f. GC-C(b) is vacuously true for f in ,;, sinice

testset(f) = 0.

(3c) A 2 (s', r) = 7r.

Claims about s':

1. tests et(f) = 0, by precondition.

2. accmin(f) i$ nil, by precondition.

3. level(f) 5 level (fragmnent( target (accmir~f )))), by Claim 2 and CC-A.

4. accmin(f) is the minimum-weight external link of f, by Claim 2, CC-A, andl

Claim 1.

5. level(f) < level(fragmcnt( target (1))), where I is the minimum-weight external

link of f, by Claims 3 and 4.

Using Claim 5, it is easy to see that S-2 (s')7rS 2 (s) is an execution fragment of
COM.

iii) 7r is TestNode(p).

(3a) Obviously, Pr,( is still true in s for any f#f.Inspecting the code verifies

that CC-A and GC-B are still true in s for f as wvell. By GC-C(b), minlink(f) = nil

in .s'; CC-C is true for f in s because minlink(f) is not changed.

(3b) A 2 (S, 7r) is empty, and obviously S 2 () S 2 (s).

iv) r is Merge(fg).

(3a) Obviously, PGC, is still true in s for any f~ other than f and g. CC-A is

vacuously true in s for h., since accmin(i) = I. CC-B is vacuously true in .s for

h, since testset(h) #0. CC-C is true in s for h since rninlink(h) = till.

(3c) A2(S', 7r) 7r. Obviously, S 2 (s'jwS2 (s5) is ail execution fragment of COAL

v) 7r is Absorb(fg).

(3a) Obviously, PGC- is still true in s for anly f~' other than f and g.

In going from s' to s, tcstset(f) is either emipty in both or non-empty in both,

77zinlinkff) remains the Same, and the truth of the e\ ,:tence of an external link of
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f either stays true or goes from true to false. Thus GC-B and GC-C are true in s

for f.

We now deal with GC-A. If accmin(f) = nil in s', then the same is true in s,

so GC-A is vacuously true for f in s.

Assume accmin(f) = (r,t). Let minlink(g) = (q,p).

Claims about s':

1. level(g) < level(f), by precondition.

2. fragment(p) = f, by precondition.

3. level(f) level(fragment(t)), by GC-A.

4. fragment(t) # g, by Claims 1 and 3.

5. (q, p) 7 (t,r), by Claim 4 and COM-A.

6. wt(q,p) < wt(l), for any I # (q,p) that is an external link of g, by COM-A.

7. If p V testset(f), then wt(r,t) < wt(q,p), by Claim 5 and GC-A.

8. If p V testset(f), then wt(r, t) < wt(l), for any I that is an external link of g, by

Claims 6 and 7.

If p _ testset(f) in s', then any node p' E nodes(f) is not in testset(f) in s

exactly if, in s', p' is either in nodes(f)- testset(f) or in nodes(g). Claim 8 implies

that in s, (r, t) is still the minimum-weight external link of any node in f that is %

not in testset(f). %

If p E testset(f) in s', then any node p' E nodes(f) is not in testset(f) in s

exactly if p' is in nodes(f)- testset(f) in s'. Thus in s, (r,t) is stiil the minimum-

weight external link of any node in f that is not in testset(f).

Since g is the only fragment whose level changes in going from s' to s, Claim 4

implies that level(f) < level(fragment(t)) in s. Thus, since accmin(f) = (r,t) in s.

GC-A is true in s for f.

(3c) A 2 (s, 7r) = 7r. Obviously S 2 (s')irS 2(s) is an execution fragment of

COM. 0

Let Pc" = (P(.oA. 0S2) A PGC.

Corollary 16: P(;(. is trui in ewery reachable state of GC.

Proof. By Lemmas 1 and 15. 0

35



Section 4.2.3: TAtL Simulates GC

4.2.3 TAR Simulates GC

This automaton expands on the nethod by which a node finds its loval

minimum-weight external link. Some local information is introduced il this ver-

sion, in the form of node variables and messages. Three FIFO message queues are

associated with each link (p,q): tarqueuep((p, q)), the outgoing queue local to p;

tarqueuepq ((p, q)), modelling the communication channel; and tarqueueq ((p, q)), the

incoming queue local to q. The action ChannelSend(l, m) transfers a message in

from the outgoing local queue of link I to the communication channel of 1; and the

action ChannelRecv(l, m) transfers a message m from the communication channel

of link I to the incoming local queue of 1.

Each link I is classified by the variable 1status(l) as branch, rejected, or un-

known. Branch means the link will definitely be in the minimum spanning tree;

rejected means it definitely will not be; and unknown means that the link's status

is currently unknown. Initially, all the links are unknown.

The search for node p's minimum-weight external link is initiated by the ac-

tion SendTest(p), which causes p to identify its minimum-weight unknown link as
testlink(p), and to send a TEST message over iLs testlink together with information

about the level and core (identity) of p's fragment. If the level of the recipient

q's fragmeit is less than p's, the message is requeued at q, to be dealt with later
(when q's level has increased sufficiently). Otherwise, a response is sent back. If

the fragments are different, the response is an ACCEPT message, otherwise, it is

REJECT message. An optimization is that if q has already sent a TEST message over

the same edge and is waiting for a response, and if p and q are in the same fragment..

then q does not respond - the TEST message that q already sent will inform p that

the edge (p, q) is not external.

When a REJECT message (or a TEST in the optimized case described above) is

received, the recipient marks that link as rejected, if it is unknown. It is possible

that the lik is already marked as branch, in which case it should not be changed

to rejected.

When a ChangeRoot(f) occurs, minlink(f) is marked as branch when an

Aborb(f, g) occurs, the reverse link of mninli'nk(g) is marked as branch. As soon as
a link I is classified as branch, the InTree(l) output, action can occur; as soon as a

link I is classified as rejected. the NotlnTree(l) output action can occur.

The requeuing of a message is a delicate aspect of this (as well as the original)

algorithm. When p receives a message that it is not yet ready to handle, it cannot
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simply block receiving any more messages on that link, but instead it must allow

other messages to jump over that message, as the following example shows. Suppose
p is in a fragment at level 3, q is in a fragment at level 4, p sends a TEST message

to q with parameter 3, and before it is received, q sends a TEST message to p with

parameter 4. When p receives q's TEST message, it is not ready to handle it. When

q receives p's TEST message, it sends back an ACCEPT message. In order to prevent

deadlock, p must be able to receive this ACCEPT message, even though it was sent

after the TEST message. Thus, the correctness of the algorithm depends on a subtle

interplay between FIFO behavior, and occasional, well-defined, exceptions to it.

The following scenario demonstrates the necessity of checking that lstatus(l) is
unknown before changing it to rejected, when a TEST or REJECT is received. (The

reason for the check, which also appears the full algorithm, is not explained in

[GHS].) Suppose p is in fragment f with level 8 and core c, q is in fragment g with

level 4 and core d, and (q,p) is the mininmum-weight external link of g. First, q

determines that (q,p) is its local minimum-weight external link. Then p sends a

TEST(8, c) message to p, which is requeued, since 8 > 4. Eventually, ComputeMin(g)

occurs, and minlink(g) is set equal to (q, p). Then ChangeRoot(g) occurs, and (q,p)

is marked as branch. Then Absorb(f, g) occurs, and (p, q) is marked as branch. The

next time that q tries to process p's TEST(8, d) message, it succeeds, determines that

(q,p) is not external, since d is the core of q's fragment, and sends REJECT to q. But.

q had better not change the classification of (q,p) from branch to rejected. Similarly,
when p receives q's REJECT message, it had better not change tile classification of

(pi q) from branch to rejected.

Define automaton TAR (for "Test-Accept-Reject") as follows.

The state consists of a set fragments. Each element f of the set is cadled a
fragment, and has the following components:

" subtree(f), a subgrapt -n G;

" core(f), an edge of G or nil;

" level(f), a nonnegative integer;

" minlink(f), a link of G or nil;

" rootchanged(f), a Boolean; and

" testset(f), a subset of V(G).
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For each node p, there is a variable testlink(p), which is either a link of G or nil.

For each link (p, q), there are associated four variables:

* lstatus((p, q)), which takes on the values "unknown", "branch" and -rejected":

" tarqueuep((p, q)), a FIFO queue of messages from p to q waiting at p to be sent:

• tarqueuepq((p, q)), a FIFO queue of messages from p to q that are in the com-

munication channel; and

" tarqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be

processed.

The set of possible messages M is {TEST(l,c) : I > O,c E E(G)} U {ACCEPT.

REJECT}.

The state also contains Boolean variables, answered(l), one for each I E L(G),
and Boolean variable awake.

In the start state of TAR, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) = 0,
minlink(f) is the minimum-weight link adjacent to p, rootchanged(f) is false, and
testset(f) is empty. For all p, testlink(p) is nil. For each link 1, lstatus(l) = unknown.
The message queues are empty. Each answered(l) is false and awake is false.

The derived variable tarqueue((p,q)) is defined to be tarqueuep((p,q)) 11 tar-

queuepq((p,q)) I tarqueueq((p,q)). 1

The derived variable accmin(f) is defined as follows. If minlink(f) 5 nil, or
if there is no external link of any p C nodes(f) - testset(f), then accmin(f) = nil.

Otherwise, accmin(f) is the minimum-weight external link of all p E nodes(f) -

testset(f).

Input actions:

* Start(p), p E V(G)
Effects:

Given two FIFO queues q1 and q2, define q1 Jq2 to be the FIFO queue obtained

by appending q2 to the end of q1. Obviously this operation is associative.

3



Section 4.2.3: TAR Simulates GC

awake := true

Output actions:

" InTree((p,q)), (p,q) E L(G)

Preconditions:

lstatus((p, q)) = branch

answered((p,q)) false

Effects:

answered((p,q)) := true

" NotlnTree((p,q)), (p,q) C L(G)

Preconditions:

lstatus((p,q)) = rejected

answered((p,q)) = false
Effects:

answered((pq)) := true

Internal actions and a procedure):

* ChannelSend((p,q),m), (p,q) E L(G), m E M

Preconditions:
m at head of tarqueuep((p, q))

Effects:

dequeue(tarqueuep((p, q)))
enqueue(m, tarqueuepq((p, q)))

9 ChannelRecv((p,q),7n), (p,q) C L(G), m M l
Preconditions:

ro at head of tarqueuepq((p, q))

Effects:

dequeue(tarqueuepq( (p, q)))

enqueue(m. tarqueucq( (p, q)))

* SendTest(p), p E V(G)

Preconditions:

p E testset(fragn ent(p))
- cs tlink(p) = nil

Effects:

ex('cute procedure Test(p)
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o Procedure Test(p), p E V(G)

- let f = fragment(p) -

if 1, the minimum-weight link of p with lstatus(l) =unknown, exists then

testlink(p): I

enqueue(TEsT( leVel(f), core(f)), tarqueuep(l))

else[

remove p from testset(f)

testlink(p) := nil

o Receive Test((q, p),1, c), (p, q) E L(G)

Preconditions:

TEST(l, c) at head of tarqueuep ((q, p))

Effects:

dequeue( tarqueuep( (q, p)))

if I > level(fragment(p)) then

enqueue(TEST(l, c),tarqueuep( (q, p)))

else

if c :A core(fragment(p)) then

enqueue(ACCEPT, tarqueuep((p, q)))
else

if 1Mtatus((p, q)) = unknown then lstatus((p, q)) :=rejected

if itestlink(p) # (p, q) then

enqueue(REJECT ,tarqueue,,( (p, q)))

else execute procedure Test(p)

o ReceiveAccept((q, p)), (q, P) E L(G)

Preconditions:

ACCEPT at head of tarqueuep((q,p))

Effects:

dequeue( tarqueuep( (q, p)))

tesitlink(p) := nil

remove p from testset(fragment(p))

o ReceiveRejeci((q,p)), (q,p) C- L(G)

Preconditions:

REJECT at head of tar queuep((q, p))

Effects:

dequeue( tarquenep(O (qA))
if lstats( (p, q)) =unknown then 1ttats( (p, q)) :=rejected
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execute procedure Test(p)

" ComputeMin(f), f E fragments

Preconditions:

minlink(f) = nil

accmin(f) nil

testset(f) =

Effects:

minlink(f) := accmin(f)

* ChangeRoot(f), f E fragments

Preconditions:

awake = true

rootchanged(f) = false

minlink(f) # nil

Effects:

rootchanged(f) := true

lstatus(minlink(f)) := branch

* Merge(f, g), f,g fragments

Preconditions: p

f#g
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g)

Effects:

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)

core(h) := minedge(f)

level(h) := level(f) + 1

minlink(h) := nil

rootchanged(h) := false

testset(h) := nodes(h)

delete f and g from fragments

" Absorb(f,g), f,g E fragments

Preconditions:
rootchanged(g) = true

level(g) < level(f)

let (qp) = minlink(g)

fragment(p) = f
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Effects:
subtree(f) := subtree(f) U subtree(g) U minedge(g)

if p E testset(f) then tcstset(f) := testset(f) U nodes(g) 0
Istatus((p, q)) := branch

delete g from fragments

A message 7- is defined to be a protocol message for link (p, q) in a state if m

is one of the following:
(a) a TEST message in tarqueue((p,q)) with Istatus((p, q)) # rejected.
(b) an ACCEPT message in tarqueue((q,p))

(c) a REJECT message in tarqueue((q,p))

(d) a TEST message in tarqueue((q,p)) with Istatus((q,p)) = rejected.

A protocol message for (p, q) can be considered a message that is actively helping
p to discover whether (p, q) is external.

Define the following predicates on states of TAR. (All free variables are uni-
versally quantified.)

*TAR-A:
(a) If Istatus((p, q)) = branch, then either (p, q) E subtree(fragment(p)) or min-

link (fragment(p)) = (p,q .

(b) If (p, q) E subtree(fragment(p)), then lstatus((p, q)) = lstatus((q,p)) =

branch.

* TAR-B: If lstatus((p,q)) = rejected, then fragment(p) = fragment(q) and
(p, q) V sub tree(fragment(p)).

" TAR-C: If testlink(p) # nil, then
(a) testlink(p) = (p, q) for some q;

(b) p E testset(fragment(p));
(c) there is exactly one protocol message for (p, q);

(d) if lstatus((p, q)) # branch, then (p. q) is the minimum-weight link of p with

Istatus unknown;
(e) if lstatus((p,q)) = branch, then lstatus((q,p)) = branch and tcstlink(q) #

(qp).

" TAR-D: If there is a protocol message for (p, q), then testlink(p) = (p, q).

" TAR-E: If TEST(l, C) is in tarqueuc((p, q)) then

(a) (p,q) # core(fragment(p));
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(b) if Istatus((p,q)) : rejected, then c = core(fragment(p)) and I = level(frag-

ment(p)); and

(c) if lstatus((p,q)) = rejected, then c = core(fragment(q)) and I = level(frag-

ment(q)).

" TAR-F: If ACCEPT is in tarqueue((p,q)), then fragment(p) # fragment(q) and

level (fragment(p)) > level(fragment(q)).

* TAR-G: If REJECT is in tarqueue((p, q)), then fragment(p) = fragment(q) and

Istatus ((p,q)) # unknown.

" TAR-H: rootchanged(f) is true if and only if lstatus(minlink(f)) = branch.

" TAR-I: If p V tests et(fragment(p)), then either no (p,q) has lstatus((p,q)) =

unknown, or else there is an external link (r, t) of fragment(p) with level(frag-

ment(p)) level(fragment(t)).

• TAR-J: If awake = false, then lstatus((p,q)) = unknown.

Let PTAR be the conjunction of TAR-A through TAR-J.

In order to show that TAR simulates GC, we define an abstraction mapping

M43 = (S 3 ,A 3 ) from TAR to GC. Define the function S 3 from states(TAR) to

states(GC) by ignoring the message queues, and the testlink and Istatus variables.

The derived variables accmin of TAR map to the (non-derived) variables accmin of

GC. Define the function A 3 as follows. Let. s be a state of TAR and 7r an action

of TAR enabled in s. The GC action TestNode(p) is simulated in TAR when p

receives the message that tells p either that this link is external or that p has no

external links.

e If r = ReceiveAccept((q,p)), then Aj(s, 7r) = TestNode(p).

o If 7r = SendTest(p) or ReceiveReject((q,p)), then A 3(s,7r) = TestNode(p) if

there is no link (p,r), r 0 q, with lstatus((p,r)) = unknown in s; otherwise,

A 3 (s, 7r) is empty.

* If 7r = ReceiveTest((q,p),l,c), then A 3(s,ir) = TestNode(p) if I < level(frag-

ment(p)), c = core(fragment(p)), testlink(p) = (p, q), and there is no link (p, r),
- # q. with lstatus((p, r)) = unknown in s; otherwise, A,(s, 7r) is empty.

* If 7r = ChannelSend((p,q),m) or ChannelRecv((p,q),?n.), then A 3 (s,7r) is

empty.

43
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Section 4.2.3: TAR Simulates GC

* For all other values of 7r, A3(s, r) = 7r.

The following predicates are true in every state of TAR satisfying (P,.( o S 3 ) A
P'TAR. Recall that PrGC = (PcoM o S2) A Pcc. If PG(.(S,3 (s)) is true, then th, .
GC predicates are true in S3(s), the COM predicates are true in S2(S3(S)), and the
HI predicates are true in S(S 2(S 3 (s))). Thus, these predicates axe derivable from
PTAR, together with the HI, COM and GC predicates.

* TAR-K: If testlink(p) = (p, q), then Istatus((p, q)) # rejected.

Proof: By TAR-C(d) and TAR-C(e).

TAR-L: If minlink(f) = nil and I is an external link of f, then lstatus(l)
unknown.

Proof: By TAR-A(a), if lstatus(l) = branch, then 1 is internal. By TAR-B, if
lstatus(l) = rejected, then I is internal. 0

9 TAR-M: If TEST(l,c) is in tarqueue((p, q)), then 1 > 1 and c # nil.

Proof: Let f = fragment(p) and g = fragment(q).

1. TEST(I,C) is in tarqueue((p,q)), by assumption.

Case 1: lstatus((p,q)) J rejected.
2. Istatus((p, q)) :A rejected, by assumption.
3. c = core(f) and 1 = level(f), by Claim 2 and TAR-E(b).

4. testlink(p) = (p, q), by Claims 1 and 2 and TAR-D.

5. p E testset(f), by Claim 4 and TAR-C(b).
6. minlink(f) = nil, by Claim 5 and GC-C.
7. subtree(f) 5 {p}, by Claim 6 and COM-E.
8. core(f) i nil and level(f) # 0, by Claimi 7 and COM-F.
9. level(f) > 1, by Claim 8 and COM-F.
10. c 4 nil and I > 1, by Claims 3, 8 and 0.

Case 2: lstatus((p, q)) = rejected.
11. 7status((p, q)) = rejected, by assumption.

12. c = core(g) arid = level(g), by Claim 11 and TAR-E(c).

13. testlink(q) = (q,p), by Claims 1 and 11 and TAR-D.

14. q E testset(g), by Claim 13 and TAR-C(b).
15. minlink(g) = nil, by Claim 14 and GC-C.

16. subtree(g) 54 {q}, by Claim 15 and COM-E.
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17. core(g) j nil and level(g) # 0, by Claim 16 and COM-F

18. level(g) > 1, by Claim 17 and COM-F.

19. c 3 nil and 1 > 1, by Claims 12, 17 and 18. U

* TAR-N: If TEST(l,C) is in tarqueue((q,p)) and c = core(fragment(p)), then

fragment(p) = fragment(q).

Proof:

1. TEST(l, C) is in tarqateue((q,p)), by assumption.

2. c = core(fragment(p)), by assumption.

3. c 5 nil, by Claim 1 and TAR-M.

4. If lstatus((q,p)) # rejected, then c = core(fragment(q)), by TAR-E(b).

5. If lstatus((q,p)) # rejected, then fragment(q) = fragment(p), by Claims 2, 3 and

4, and COM-F.

6. If lstatus((q,p)) = rejected, then fragment(q) = fragment(p), by TAR-B. El

e TAR-O: If minlink(f) nil, then there is no protocol message for any link of

any node in nodes(f).

Proof:

1. minlink(f) 5 nil, by assumption.

2. testset(f) 0 , by Claim 1 and GC-C.

3. testlink(p) = nil for all p E nodes(f), by Claim 2 and TAR-C(b).

4. There is no protocol message for any link (p, q), p E nodes(f), by Claim 3 and

TAR-D. 0

* TAR-P: If TEST(l,C) is in tarqueue((q,p)), c = core(fragment(p)), testlink(p) =

(p,q), and lstatus((q,p)) : rejected, then a TEST(I',c') message is in tar-

queue((p, q)) and Istatus((p, q)) = unknown.

Proof:

1. TEST(l,c) is in tarqueue((q,p)), by assumption.
2. c = core(fragment(p)), by assumption.

3. testlink(p) = (p, q), by assumption.
4. lstatus((q,p)) : rejected, by assumption.

5. fragment(p) = fragment(q), by Claims 1 and 2 and TAR-N.

6. No ACCEPT message is in tarqueue((q,p)), by Claim 5 and TAR-F.

7. The TEST(I, c) message in tarqueue( (q, p)) is a protocol message for (q, p), by

Claim 4.
S. testlink(q) = (q,p), by Claim 7 and TAR-D.
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9. lstatus((q,p)) : branch, by Claims 3, 8 and TAR-C(e).

10. lstatus((q,p)) = unknown, by Claims 4 and 9.
11. No REJECT message is in tarqueue((q. p)), by Claim 10 and TAR-G.

12. There is exactly one protocol message for (p, q), by Claim 3 and TAR-C(c).

13. A TEST(', c') message is in tarqueue((p,q)) and lstatus((p,q)) # rejected, by

Claims 6, 7, 11 and 12.
14. lstatus((p, q)) # branch, by Claims 3 and 8 and TAR-C(e).

15. lstatus((p,q)) unknown, by Claims 13 and 14.

Claims 13 and 15 give the result. LI

Lemma 17: TAR simulates GC via M 3 , PTAR, and PGC.

Proof: By inspection, the types of TAR, GC, M 3 , and PTAR are correct. By
Corollary 16, Pcc is a predicate true in every reachable state of COM.

(1) Let s be in start(TAR). Obviously, PTAR is true in s, and S 3(s) is in

start( CC).

(2) Obviously, A 3(s, r)lext(GC) = rJext(TAR).

(3) Let (s', 7r, s) be a step of TAR such that PGc is true of S 3(s') and PTAR
is true of s'. Condition (3a) is only shown below for those predicates that are not

obviously true in s.

i) 7r is ChannelSend((p,q),m) or ChannelRecv((p,q),m). A 3 (s',7r) is

--,...-enpty. (3a) and (3b) are obviously true.

ii) 7r is Start(p) or InTree(l) or NotInTree(l).

(3c) A 3 (s',7r) = 7r. If 7r = InTree(l), then by TAR-J and TAR-A(a), 7r is

enabled in S3 (s'). If r = NotInTree(1), then by TAR-J and TAR-B, 7r is enabled in

S 3 (s'). Thus, S 3 (s')irS3(s) is an execution fragment of GC.

(3a) Obviously, PTAR is still true in s.

iii) 7r is SendTest(p). Let f = fragment(p) in s'.

Case 1: There is a link (p. q) with lstatus((p, q)) = unknown in s'.

(3b) A 3 (s'. 7r) is emIpty. It is easy to see that S 3(s') = S3(s).
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(3a) By TAR-D and precondition that testlink(p) = nil, there is no protocol

message for any link of p in s'.

TAR-C(c): In s, there is exactly one protocol message for (p, q), namely the
TEST message in tarqueue((p, q)).

TAR-D: The TEST message added in s is a protocol message for (p, q), and is
not a protocol message for any other link. By the code, testlink(p) = (p, q).

TAR-E(a): By TAR-A(b), (p,q) V subtree(f). By COM-F, (p,q) # core(f).

Case 2: There is no link (p, q) with Istatus((p, q)) = unknown in s'.

(3c) A 3 (s', 7r) = TestNode(p).

Claims about s':

1. p E testset(f), by precondition.
2. minlink(f) = nil, by Claim 1 and GC-C.
3. There is no external link of p, by Claim 2, TAR-L, and assumption.

By Claims 1 and 3, TestNode(p) is enabled in S 3(s').

Claims about s:

4. p V testset(f), by code.

5. There is no external link of p, by Claim 3 and code.
6. accmin(f) does not change, by Claim 5.

By Claims 4, 5, and 6, the effects of TestNode(p) are mirrored in S 3 (s).

(3a) TAR-I: By assumption for Case 2, p has no unknown links in s', and the
same is true in s.

iv) 7r is ReceiveTest((q,p),l,c). Let f = fragment(p) in s'.

Case 1: 1 < level(f), c = core(f), testlink(p) = (p,q), and there is no link
(p, r), r j q, with lst atus((p, r)) = unknown in s'.

(3c) A3 (.5', r) = TestNode(p).

C l a i m , a b o u t s ' : 4
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1. c = core(f), by assumption.

2. testlink(p) = (p, q), by assumption.
1 Thre ;Q no 1;,l ( ,. # q wit.b l.to.tu.((p.), ) = unknown, by assumption.

4. TEST(l, c) is in tarqueue((q,p)), by preconditions.

5. p E testset(f), by Claim 2 and TAR-C(b).

6. minlink(f) = nil, by Claim 5 and GC-C.
7. No link (p, r), r j q, is external, by Claims 6 and 3 and TAR-L.
S. (p, q) is not external, by Claims 2, 3 and 4 9nd TAR-N.

By Claims 5, 7 and 8, TestNode(p) is enabled in s'.

Claims about s:

9. p V testset(f), by code.
10. There is no external link of p, by Claims 7 and 8 and code.
11. accmin(f) does not change, by Claim 10.

By Claims 9, 10 and 11, the effects of TestNode(p) are niiirored in s.

(3a) TAR-B: The only case of interest is when Istatus((p, q)) changes from
unknown in s' to rejected in s. By TAR-N, f = fragment(q) in s' and the same is
still true in s. By TAR-A(b), (p, q) V subtree(f) in s', and the same is still true in

S.

TAR-D:

Claims about s':

1. TEST(l,c) is in tarqueue((q,p)), by precondition.

2. c = core(f), by assumption.

3. testlink(p) = (p, q), by assumption.

4. There is exactly one protocol message for (p, q), by Claim 3 and TAR-C(c).
5. There is no protocol message for any link (p, r), r 5 q, by Claim 3 and TAR-D.

Case A: lstatus((q,p)) = rejected. The TEST(l,c) message in tarqueue((q,p))

is the protocol message for (p, q) in s'. Since it is removed in s, by Claims 4 and

5 there is no protocol message for any link of p in s. Concerning q: by TAR-K,

testlink(q) # (q,p); thus, the predicate is still true for q in s, even if lstatus((p, q))

is changed to rejected.

Case B: lstatus((q,p)) 5 rejected.

6. A TEST(', c') is in tarqueue((p, q)) and lstatus((p, q)) = unknown, by Claims 1,

2, 3, assumptions for Case B. and TAR-P.
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7. testlink(q) = (q,p), by Claim 1, assumption for Case B and TAR-D.

In s, the WE'r(i', c') message in tarqueue((p, q)), which exists by Claim 6, be-
comes a protucol message for (q, p), since lstatus((p, q)) is changed to rejected. By
Claim 7, testlink(q) has the correct value. By Claims 4 and 5, the predicate is
vacuously true for p in s.

TAR-E(c): The only case of interest is when Istatus((p, q)) goes from unknown
in s' to rejected in s, while there is a TEST(I',c') message in tarqueue((p,q)). By
TAR-E(b), c' = core(f) and l' = level(f) in s'. By TAR-N, fragment(q) = f. Thus

IIc= core(fragment(q)) and P' = level(fragment(q)).

TAR-I: By the assumption for Case 1 and code, p has no unknown links in s.

TAR-J: The TEST message in tarqueue((q, p)) is a protocol message for ei-
ther p,q) or (q. p). Without loss of generality, suppose for (p, q). By TAR-
D, testlink(p) = (p,q', and by TAR-C(b), p e testset(f). Thus, by GC-C,
minlink(f) = nil, and by COM-C awake = true.

Case 2: 1 > level(f), or c : core(f), or testlink(p) # (p,q), or there is a link
(p, r), r 5 q, with lstatus((p, r)) = unknown in s'.

(3b) A3(s', 7r) is empty. The only variables that are possibly changed are
lstatus((p, q)), tarqueue's, and testlink(p), none of which is reflected (directly) in
the state of GC. Thus accmin(f) does not change and S3(s') = S 3 (s).

(3a) TAR-B: As in Case 1.

TAR-C(b): If testlink(p) : nil in s, then by inspecting the code, the same is
true in s'. So the predicate is true in s because it is true in s'.

TAR-C(c): If I > level(f) in s', nothing affecting the predicate changes in going

from s' to s. Suppose I < level(f) in s'.

Claims about s':

1. TEST(l,c) is in tarqueue((q,p)), by precondition.

Case A: c 5 core(f). S

2. lstatus((q, p)) # rejected, by TAR-E(c).
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3. The TEST(I, c) message in tarqueue((q, p)) is a protocol message for (q, p), by

Claim 2.

The ACCEPT message added in s is a protocol message for (q,p). There is no

change that affects the truth of the predicate for p.

Case B: c = core(f).

Case B.1: testlink(p) # (p,q).

4. There is no protocol message for (p, q), by TAR-D.

5. The TEST(I,c) message in tarqueue((q,p)) is a protocol message for (q,p), by

Claim 4.

The REJECT message added in s is a protocol message for (q, p). No change
affects the truth of the predicate for p.

Case B.2: testlink(p) = (p, q).

6. There is a link (p,r), r 7 q, with Istatus((p,r)) = unknown, by assumption for

Case B.2.

7. There is no protocol message for (p, r), by Claim 6 and TAR-D.

Case B.2.1: istatus((q,p)) # rejected.

8. There is a TEST(l', C') message in tarqueue((p, q)) and Istatus((p, q)) = unknown,

by assumptions for Case B.2.1 and TAR-P.

9. The TEST(l,c) message in tarqueue((q,p)) is a protocol message for (q,p), by

assumptions for Case B.2.1.

The TEST(l', c') message of Claim 8 becomes a protocol message for (q,p) in s,

since 1status((p, q)) is changed to rejected. Concerning p: testlink(p) = (p,r) in s,

and a TEST message is added to tarqueue((p,r)) and is the sole protocol message

for (p, r) by Claim 7.

Case B.2.2 Istatus((q,p)) = rejected.

10. The TEST(l, c) message in tarqueue((q, p)) is the protocol message for (p, q), by

assumptions for Case B.2.2.

11. testlink(q) # (q,p), by assumption for Case B.2.2 and TAR-K.

The predicate is true for p in s because the TEST(1, c) message, which was the
sole protocol message for (p, q) by Claim 10, is removed in s; testlink(p) is now (p, I),
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and (p, r) has exactly one protocol message, by inspecting the code. No change is

made that affects the truth of the predicate for q, by Claim 11.

TAR-D: If 1 > level(f) in ;', nothing affecting the predicate changes in going

from s' to s. Suppose I < level(f) in s'.

Claims about s':

1. TEST(l,c) is in tarqueue((q,p)), by precondition.

Case A: c # core(f).

2. lstatus((qp)) :A rejected, by assumption for Case A and TAR-E(c).

3. testlink(q) = (q,p), by Claims 1 and 2 and TAR-D.

Then testlink(q) is still (q, p) in s, and there is an ACCEPT message in tarqueue((p, q)).

No change affects the truth of the predicate for p.

Case B: c = core(f).

Case B.1: testlink(p) 7 (p,q).

4. The TEST(,c) message in tarqueue((qp)) is a protocol message for (q,p), by

assumptions for Case B.1 and TAR-D.

5. testlink(q) = (q,p), by Claim 4 and TAR-D.

Then in s, there is a REJECT message in tarqueue((pq)) and testlink(q) is still

(q, p). No change affects the truth of the predicate for p.

Case B. 2: te.sflirtk(p) = (p, q).

6. There is a link (p, 7-), r 4 q. with lstatus((p, r)) = unknown, by assumption for

Case 2.

7. There is exactly one protocol message for (p,q), by TAR-C(c).

Case B.2.1: lqtatus((q,p)) = rejected.

S. tcstlink(q) 7# (q,p), by TAR-K.

No changes affect the truth of the pre(licate for q. For 1): The TEST(1, C) message

in1 tarqueuc((q.p) ) is the protocol nmissage for (p,q). It is removed in ,;. A ris'r

message is added to tarqueut.((p,r)) in .', where Lstatus( (p,r)) = unknown, and

testlink(p) (p, r) by code.
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Case B.2.2: lstatus((q,p)) 34 rejected.

9. A TEST(l', c') miessage is in tarqueue((p,q)) and l.qtatu.q((p, q)) unknown, by

Claini 1, the assumption for Case B.2.2 and TAR-P.

10. testlink(q) = (q,p), by Claim 8 and TAR-D.

For q: In s, since lstatus( (q, p)) is changed to rejected, the TEST(I'. C') message

in tarqueue((p,q)) (of Claim 9) becomes a protocol message for (q,p). This is OK

by Claim 10.

For p: The TEST(I', c') message of Claim 9 is the protocol message for (p, q).

The rest of the argument is as in Case B.2.1.

TAR-E: (a) Suppose a TEST message is added to tarqueue((p,r)). As in 7- r

SendTest(p), Case 1. (c) As in Case 1.

TAR-F: The only case of interest is when an ACCEPT message is added to

tarqueue((p, q)) in s.

Claims about s':

1. TEST(l,c) is in tarqueue((q,p)), by precondition.

2. 1 < level(f), by assumption.

3. c :A core(f), by assumption.

4. Istatus((q,p)) # rejected, by Claims 1 and 3 and TAR-E(c).

5. c = core(fragment(q)), by Claims 1, 4 and TAR-E(b).

6. 1 = level(fragment(q)), by Claims 1, 4 and TAR-E(b).

7. core(f) 54 core(fragment(q)), by Claims 3 and 5.

8. level(f) :S level(fragment(q)), by Claims 2 and 6.

Claims 7 and 8 are still true in s.

TAR-G: The only case of interest is when a REJECT message is added to

tarqueue( (p, q)).

Claims about s':

1. TEST(1, C) is in tarqueue((q,p)), by precondition.

2. c = core(f), by assumption.

3. testlink(p) 5 (p, q), by assumption.

4. If lstatus((q.p)) # rejected. then c core(fr'agqrent(q))., by Claim 1 and TAR-

E(b).
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5. If lstatus((q,p)) 5 rejected, then f = fragment(q), by Claim 4 and COM-F.

6. If lstatus((q,p)) = rejected, then f = fragrnent(q), by TAR-B.
7. f = fragment(q), by Claims 5 and 6.

Claim 7 is still true in s.

TAR-I: The only case of interest is when p is removed from testset(f). But
when that happens, there are no unknown links of p.

TAR-J: Suppose l.statu.((p, q)) is changed to rejected. As in Case 1.

v) 7r is ReceiveAccept((q,p)). Let f= fragment(p) in s'.

(3c) A 3(s', 7r) = TestNode(p).

Claims about .':

1. ACCEPT is in tarqueue((q,p)), by precondition.

2. fragment(q) f, by Claim 1 and TAR-F.

3. level(f) < level(fragment(q)), by Claim 1 and TAR-F.

4. (p, q) is an external link of f, by Claim 2.

5. testink(p) = (p, q), by Claim 1 and TAR-D.

G. p E testset(f), by Claim 5 and TAR-C(b).
7. minlink(f) = nil, by Claim 6 and GC-C. r

S. lstatus((p, q)) # branch, by Claims 4 and 7 and TAR-L.
9. (p, q) is the minimum-weight link of p with istatus unknown, by Claims 5 and 8

and TAR-C(d).

10. (p, q) is the minimum-weight external link of p, by Claims 7 and 9 and TAR-L.

By Claims 6, 10, and 3, TcstNode(p) is enabled in s'.

Claims about s:

11. p i% testset(f), by code.

12. (p. q) is the minimum-weight external link of p, by Claim 10.
13. If wt(p,q) < wt(accmi(f)) in s', then accmin(f) = (p,q) in s, by Claims 11
and 12.

By Claims 11 and 13, the effects of TrcstNode(p) are mirrored in s.
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(3a) TAR-D: In s', ACCEPT in tarqueue((q,p)) is a protocol message for (p, q).
By TAR-C(c) and TAR-D, it is the only protocol message for any link of 1 in s'.
Thus in s, there is no protocol message for any link of p, and the predicate is
vacuously true in s for p. No other node is affected.

TAR-I: By Claims 3 and 4, it is OK to remove p from testset(f).

vi) r is ReceiveReject((q,p)). Let f = fragment(p) in s'.

Case 1: There is a link (p, r), r 54 q, with lstatus((p, r)) = unknown.

(3b) A 3 (s',7r) is empty. Obviously S 3 (s') = S 3 (s).

(3a) Claims about s':

1. REJECT is in tarqueue((q,p)), by assumption.

2. The REJECT in tarqueue((q,p)) is a protocol message for (p, q), by Claim 1.
3. testlink(p) = (p, q), by Claim 2 and TAR-D.

4. There is only one protocol message for (p, q). by Claim 3 and TAR-C(c).
5. There is no protocol message for any other link of p, by Claim 3 and TAR-D.
6. p E testset(f), by Claim 3 and TAR-C(b).

TAR-B: Suppose lstatus((p, q)) goes from unknown in s' to rejected in s. By
TAR-G, f = fragment(q) in s'. By TAR-A(b), (p, q) subtree(f) in s'. Both facts
are still true in s.

TAR-C(b): By Claim 6.

TAR-C(c): In s, testlink(p) = (p, r), and the TEST message is the sole protocol
message for (p, r) by Claim 5.

TAR-D: In s, the REJECT message is removed and a TEST message is added to
tarqueue((p,r)) with lstaius((p,r)) = unknown. So there is a protocol message for
(p, r) and no other link of p by Claims 4 and 5. By code, testlink(p) = (p, r).

TAR-E(a): Suppose a TEST messge is added to soie tarqueue((p, r)). As in

7r = SendTest(p), Case 1.

TAR-E(c): The only case of interest is wlien lhttn,((p,q)) goes from un-
known in s' to rejected in s. But by Claims 2 and 4, there is no TEST message
in tarqueuc((p, q)) in ;' if 1statu,((p. q)) = unknown.
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TAR-I: By Claim 6, the predicate is vacuously true.

TAR-J: Suppose lstatus((p, q)) is changed from unknown to rejected. Similar

to 7r = R eceive Test((q,p), 1, c), Case 1, with REJECT being the protocol message for

(p, q).

Case 2: There is no link (p, r), r q, with lstatus((p, r))= unknown.

(3c) A3(.', r) = TestNode(p).

Claims about s':

1. REJECT is in tarqueue((q,p)), by precondition.

2. testlink(p) = (p, q), by Claim 1 and TAR-D.

3. p E testset(f), by Claim 2 and TAR-C(b)

4. minlink(f) = nil, by Claim 3 and GC-C.

5. fragment(q) = f, by Claim 1 and TAR-G.

6. (p, q) is not external, by Claim 5.

7. There is no external link (p, r), r 7- q, of p, by Claim 4, TAR-L, and assumption

for Case 2.

By Claims 3, 6 and 7, TestNode(p) is enabled in s'.

Claims about s:

8. p V testset(f), by code.

9. There is no external link of p, by Claims 6 and 7 and code.

10. accmin(f) does not change, by Claim 9.

By Claims 8, 9 and 10, the effects of TestNodc(p) are mirrored in s.

(3a) TAR-B: Same as Case 1.

TAR-D: In s, testlink(p) = nil. We must show there is no protocol message

for any link of p. In s', the REJECT message in tarqueue((q,p)) is the sole protocol

message for any link of p. as in Case 1. The REJECT message is removed in s and

no protocol message is added.

TAR-E(c): As in Case 1.
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TAR-I: By assumption for Case 2 and code, there are no unknown links of p

TAR-J: As in Case 1.

vii) 7r is ComputeMin(f).

(3c) A 3(s', 7r) = 7r. Since accmin(f) = nil in s because minlink(f) = nil in s,

it is easy to see that 7r is enabled in $3(s') and that its effects are mirrored in ,3(s).

(3a) TAR-H: By GC-A, accmin(f) = 1 is an external link of f in s'. Since

minlink(f) = nil in s', lstatus(l) 5 branch by TAR-A(a). Also, by COM-B,

rootchanged(f) = false in s'. Thus in s, rootchanged(f) = fa!se -nd lstatus(min-

link(f)) J branch.

viii) 7r is ChangeRoot(f).

(3c) A 3(S',7r) = 7r. It is easy to see that 7r is enabled in S3 (s') and that its

effects are mirrored in S 3(s).

(3a) Only TAR-A(a), TAR-H and TAR-J are affected. Obviously TAR-A(a)

and TAR-H are still true in s. For TAR-J: by precondition awake = true in s', and

is still true in s.

ix) 7r is Merge(fg).

(3c) A 3 (s', 7r) = 7r. After noting that, accmin(h) = nil in s because testset(h) =

nodes(h) in s, it is easy to see that 7r is enabled in S 3(s') and that its effects are

mirrored in 83(s).

(3a) TAR-A(b): The predicate is true for h by TAR-H.

TAR-B: The predicate is true for h by TAR-H.

TAR-C: By GC-C, no r in nodes(f) or nodes(g) is in testset(f) or testset(g) in

By TAR-C(b), testlink(r) = nil for all such r. So the predicate is vacuously true
in h. ,

TAR-E(a): By TAR-O. there is no TEST message in tarqueue((p,q)) or in
tarqueue((q, p))., where (p, q) = minlink(f), in s'. Since (p, q) = core(h) in s, done.

TAR-E(b): By TAR-O, there is no 'r~sr(l, c) message in tarqueue((p, q)) with
lstatus((p, q)) y rejected in .s', for any p in nodc:s(,f) or nodes(g). Thus, the same is

true in s for any p in nodes(h ). and the predicate is vacuously true in .s for h.
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TAR-E(c): If TEST(l, C) is in tarqueue((p,q)) and lstatus((p,q)) = rejected in
s', then it is a protocol message for (q,p) in s'. By TAR-O, fragment(q) is neither
f nor g in s'. So the predicate is still true in s.

TAR-F: If ACCEPT is in tarqueue((p, q)) in s', it is a protocol message for (q,p)
in s'. By TAR-O, fragment(q) is neither f nor g in s'. If fragment(p) is neither
f nor g in s', then the predicate is still true in s. Without loss of generality,

suppose fragment(p) = f in s'. By TAR-F, level(f) level(fragment(q)) in .'.
Then fragment(p) = h 4 fragment(q) in s, and level(h) (in s) > levckf) (in s') >
level(fragment(q)) (in s' and s).

TAR-H: By code, rootchanged(h) = false. Since minlink(h) = nil by code,
Istatus (minlink(ff) 5# branch.

TAR-I: For nodes in h, the predicate is vacuously true since testset(h) =

nodes(h). For nodes not in h, the predicate is still true since the level of every

node formerly in nodes(f) or nodes(g) is increased.

x) 7r is Absorb(fg).

(3c) .A3(s', 7r) = 7r. It is easy to see that 7r is enabled in S3 (s'). Below we show
that accmin(f) is the same in s as in s', which together with inspecting the code,

shows that the effects of 7r are mirrored in S 3 (s).

Let (q,p) = minlink(g). If p c testset(f) in s', then every node in nodes(g) in
.s' is added to testset(f) in s. No change is made to any of the criteria for defining 6
accmin(f).

Suppose p V testset(f) in s'. If minlink(f) 7£ nil in s', then the same is true in
s, and accmin(f) = nil in s' and s. Suppose minlink(f) = nil in s'.

Claims about s':

1. level(f) < level(g), by precondition.

2. p G nodes(f), by precondition.

3. p V testset(f), by assumption.

4. minlink(f) = nil, by assumption.
5. q C node.q(g), by CONT-A.

6. f 5 g, by Claim 1.

7. accrin(f) (r, t), for some r and t, by Claims 2 through 6.

8. fraqment(t) i4 g, by Claims 1 and 7 anl GC-A.
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9. (r, t) J (p, q), by Claims 5 and 8.

10. wt(r,t) < wt(p,q), by Claims 2, 3, 5, 6, 7, and 9 and GC-A.

11. wt(p,q) !_ wt(u,v) for any external link (u, v) of g, by COM-A.

12. wt(r,t) < wt(u,v) for any external link (u,v) of g, by Claims 10 and 11.

By Claims 7, 8 and 12, accmin(f) = (r,t) in s.

(3a) TAR-A(b): The predicate is true in s for f by TAR-H.

TAR-B: The predicate is true in s for f by TAR-H.

TAR-C(b): By GC-C, since minlink(g) 5 nil, testset(g) = 0 in s'. By TAR-

C(b), testilink(p) = nil in s' for all p E nodes(g). There is no change for p E nodes(f)

in s' in going from s' to s. Thus the predicate is true in s for f.

TAR-C(e): Suppose (q,p) = minlink(g) in s' and lstatus((p, q)) becomes branch

in s. By TAR-H, Istatus((q, p)) = branch in s'. As in TAR-C(b), testlink(q) J (q, p),

so the predicate is still true in s.

TAR-E(a): OK because core(f) does not change.

TAR-E(b): Let (q,p) = minlink(g) in s'. If we can show Istatus((p,q)) #
rejected in s', we'd be done. If lstatus((p, q)) = rejected in s', then fragment(p) =

fragment(q). This contradicts level(g) < level(f), which implies that g f.

TAR-E(c): Suppose TEST(I,c) is in tarqueue((p, q)) and lstatus((p, q)) = re-

jected in s', for some link (p,q) in L(G). This is a protocol message for (q,p).

By TAR-O, fragment(q) # g in s'. Thus fragment(q) is the same in s' and s, and

c = core(fragment(q)) and I = level(fragment(q)) in s.

TAR-F: Suppose ACCEPT is in tarqueue((p,q)) in s', for some link (p, q) in L(G).

This is a protocol message for (q, p). By TAR-O, fragment(q) # g in s'. By TAR-F,

fragment(p) 76 fragment(q) in s'. By preconditions, level(g) < level(f), so it cannot

be the case that fragment(p) = g and fragment(q) = f.

Suppose fragment(p) = g. Since level(fragmeni(p)) in s is greater than it is in

s', and since fragment(q) 7$ f in s', the predicate is still true in s.

Suppose fragment(q) = f. Since fragc ni(q) is the same in ,s as in s', and since

fragment(p) 7$ g in '. th,' predicate i, still true in s,
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If fragment(p) : g and fragment(q) : f in s', the predicate is obviously still
true in s.

TAR-G: Suppose REJECT is in tarqueue((p, q)) in s', for some link (p, q) in L(G).
This is a protocol message for (q, p). By TAR-O, fragment(q) 5 g in s'. By TAR-G,

fragment(p) # g in s', since otherwise fragment(p) = fragment(q) = g in s'. So the

predicate is still true in s.

TAR-H: Let (q,p) = minlink(g). Since level(f) > level(g) by COM-A, (p,q) _

minlink(g). So it is OK to set lstatus((p,q)) to branch.

TAR-I: First note that if there is some node r E nodcs(f) - testset(f) in s' S
with an unknown link, then by TAR-I there is an external link (t, u) of f, and
level(f) <_ level(fragment(u)). Thus fragment(u) # g, so in s, the predicate is still
true for nodes that were in nodes(f) in s'.

To show that the predicate is true in s for nodes that were in nodes(g) in s': we

only need to consider the case when p V testset(f) in s', i.e., when nodes formerly in
nodes(g) are not added to testset(f). Since level(f) > level(g), minlink(f) # (p, q),
by COM-A. Thus, by TAR-A(a) and TAR-B, lstatus((p, q)) = unknown, and the
argument in the previous paragraph holds.

To show that the predicate is true in s for nodes that are not in either nodes(f)
or nodes(g) in s', it is enough to note that the only relevant change is that the level
of every node formerly in nodes(g) is increased. El

Let PTAR =(P 0 33) A PTAR.

Corollary 18: PTAR is true in every reachable state of TAR.

Proof: By Lemmas 1 and 17. D
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4.2.4 DC Simulates GC

This automaton focuses on how the nodes of a fragment cooperate to find the

minimum-weight external link of the fragment in a distributed fashion. The variable

mznlink(f) is now a derived variable, depending on variables local to each node,

and the contents of message queues. There is no action ComputeMin(f). The two

nodes adjacent to the core send out FIND messages over the core. These messages

are propagated throughout the fragment. When a node p receives a FIND message,
it changes the variable dcstatus(p) from unfind to find, relays FIND messages, and

records the link from which the FIND was received as its inbranch(p). Then the node

atomically finds its local minimum-weight external link using action TestNode(p) as

in GC, and waits to receive REPORT(W) messages from all its "children" (the nodes

to which it sent FIND). The variable findcount(p) records how many children have

not yet reported. Then p takes the minimum over all the weights w reported by its

children and the .,eight of its own local minimum-weight external link and sends

that weight to its "parent" in a REPORT message, along inbranch(p); the weight and

the link associated with this minimum are recorded as bestwt(p) and bestlink(p),

and dcstatus(p) is changed back to unfind. When a node adjacent to the core has

heard from all its children, it sends a REPORT over the core. This message is not
processed by the recipient until its dcstatus is set back to unfind. When a node p

adjacent to the core receives a REPORT(w) over the core with w > bestwt(p), then

mznlink(f) becomes defined, and is the link found by following bestlinks from p.

The ChangeRoot(f) action is the same as in GC. When two fragments merge, a

r.i;D message is added to one link of the new core. A new action, AfterMerge(p, q),

adds a FIND message to the other link of the new core. When an Absorb(f,g)

action occurs, a FIND message is directed toward the old g along the reverse link of

minlink(g) if and only if the target of minlink(g) is in testset(f) and its dcstatus is

find.

This algorithm (as well as the original one) correctly handles "leftover" REPORT

messages. Recall that a REPORT message is sent in both directions over the core

(p, q) of a fragment f. Suppose the root p receives its REPORT message first, and

the other REPORT message, the "leftover" one. which is headed toward q, remains

in the queue until after f merges or is absorbed. Since the queues are FIFO relative

to REPORT and FIND messages, the state of q remains such that when the leftover

REPORT message is received, the only change is the removal of the message.

Define automaton DC (for "Distributed ComputeMin") as follows.

Gok
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The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

" subtree(f), a subgraph of G; V

" core(f), an edge of G or nil;

* level(f), a nonnegative integer;

" rootchanged(f), a Boolean; and

" testset(f), a subset of V(G).

For each node p, there are the following variables:

" dcstatus(p), either find or unfind;

" findcouni(p), a nonnegative integer;

" bestlink(p), a link of G or nil;

• bestwt(p), a weight or oo; and

" inbranch(p), a link of G or nil.

For each link (p, q), there are associated three variables:

* dcqueuep((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

9 dcqueuepq((p, q)), a FIFO queue of messages from p to q that are in the com-
munication channel; and

* dcqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be

processed.

The set of possible messages M is {REPoRT(w) : w a weight or oo} U {FIND}.

The state also contains Boolean variables, answered(l), one for each I E L(G),
and Boolean variable awake.

In the start state of DC, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtrce(f) = {p}, core(f) = nil, level(f) = 0,
rootchanged(f) is false, and tcstsct(f) is empty. For each p, dcstatus(p) = unfind,
findcount(p) = 0, bcstlink(p) is the minimum-weight external link of p, bestwit(p) is
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the weight of bestlink(p), and inbranch(p) = nil. The message queues are empty.

Each answered(l) is false and awake is false.

The derived vaxiable dcqueue((p,q)) is defined to be dcqueueq((p,q)) 1 Ic-

queuepq((p, q)) I dcqueuep((p, q)).

A REPOrT(W) message is headed toward p if either it is in dcqueue((q,p)) for

some q, or it is in some dcqueuc((q, r)), where q E subtree(r) and r E subtree(p). A

FIND message is headed toward p if it is in sonil dcqueuc((q, r)) and p is in subtree(r).

A message is said to be in subtree(f) if it is in some dcqueue((q, p)) and p E nodes(f).

Now minlink(f) is a derived variable, defined as follows. If nodes(f) = {p}, then

minlink(f) is the minimum-weight external link of p. Suppose nodes(f) contains

more than one node. If f has an external link, if dcstatus(p) = unfind for all

p E nodes(f), if no FIND message is in subtrec(f), and if no REPORT message is

headed toward nw-root(f), then minlink(f) is the first external link reached by

starting at mw-root(f) and following bestlinks; otherwise, minlink(f) = nil.

Also accmin(f) is a derived variable, defined as in TAR as follows. If
minlink(f) 7 ,i1 or if there is no external link of any p E nodes(f) - testset(f),

then accmin(f) = nil. Otherwise, accmin(f) is the minimum-weight external link

of all p E nodes(f) - testset(f).

Note below that ReceiveFind((q,p)) is only enabled if AfterMerge(p,q) is not.

enabled; without this precondition on ReceiveFind, p could receive the FIND before

sending a FIND to q, and thus q's side of the subtree would not. participate in the

search.

Input actions:

* Start(p), p C V(G)

Effects:

awake := true

Output actions:

* InTree((p,q)), (p,q) C L(G)

Preconditions:

awake = true

(p, q) C subtree(frayinent(p)) or (p, q) ninlink(fragment(p))

answered( (p q)) = false
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Effects:

answered((p, q)) := true

9 NotlnTree((p,q)), (p,q) E L(G)
Preconditions:

fragment(p) = fragment(q) and (p, q) V subtree(fragment(p))

answered((p, q)) = false

Effects:

answered((p, q)) := true

Internal actions:

* ChannelSend((p,q),m), (p,q) E L(G), m M
Preconditions:

m at head of dcqueuep((p, q))

Effects:
dequeue(dcqueuep( (p, q)))
enqueue(m, dcqueue pq((p, q)))

" ChannelRecv((p,q),m), (p,q) E L(G), m E M
Preconditions:

m at head of dcqueuepq((p, q))

Effects:

dequeue(dcqueuep9 ((p, q)))
enqueue(m, dcqueueq((p, q)))

" TestNode(p), p E V(G)

Preconditions:

- let f = fra gment(p) -

p E testset(f) S
if (p, q), the minimum-weight external link of p, exists

then level(f) < level (fragrne nt(q))
dcstatus(p) = find

Effects: ,

testset(f) := testset(f) - {p}
if (p, q), the minimum-weight, external link of p, exists then

if wt(p. q) < be.qtwt(p) then [

bestwt(p) := wt(p, q) ] S

execute procedure Report(p)
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*RcceiveReport((q,p),w), (q,p) E L(G)
Preconditions:

REPORT(W) message at head of dcqueue,((q,p))
Effects:

dequeue(dcqueite,((q, p)))

if (p, q) 54 inbranch(p) then
findcount(p) := findcount(p) - 1

if w < besit(p) then

bestwt(p) := tv

bestlink(p) :=(p, q)
execute procedure Report(p)

else

if dcstatus(p) = find then enqueue(RE;PORT(W), dcqueue,((q,p,))

" ReceiveFind((q,p)), (q,p) E L(G)

Preconditions:

FIND message at head of dcqueuep((q,p))
AfterMerge(p, q) not enabled

Effects:

dequeue(dcqueucp((q, p)))
dcstatus(p) :=find

inbranch(p) :=(p, q)
bestlink(p) := nil

bestwt(p) oo

- let S = {(p, r) : (p, r) E subiree(fragment(p)),r 54 q)
findcount(p) := S
enqueue(FIND, dequeuep(l)) for all 1 G S

* Procedure Report(p), p E V(G)
if findcount(p) 0 and p ' testset(fragment(p)) then

destatuas(p) :=unfind

enqueue(REPORT( bestwt(p)), dcqueue ( inbranch~p)))

* ChangeRoot(f), f C fragments
Preconditions:

awake = true i.

rootchanged(f) = false

minlink(f) #4 nil
Effects:
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rootchanged(f) :=true

*Merge(f, g), f , g E fragments I0

Preconditions:

f 54g

rootchanged(f) = rootchanged(g) true

mtnedge(f) = minedge(g)

Effects:

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)

core(h) :=minedge(f)

level(h) :=level(f) + 1

rootchanged(h) := false

testset(h) := nodes(h)

- let (p,q = rninlink(f)

enqueue(FIND, dcqueue,((p, q)))
delete f and g from fragments

* AfterMerge(p, q), p, q E V(G)
Preconditions:

(p,q) = core (fragment(p)) V

FIND message in dcqueue((q,p))

1-1 FIND mcssage in dcqueue((p, q))

dcstatus(q) = unfind

no REPORT message in dcqueue((q, p))

Effects:

enqueue(FIND, dcqueuep((p, q)))

9 Absorb(.f, g), f, g E fragments

Preconditions:

rootchanged(g) =true

level(g) < level(f)

- let (q,p) =minlink(g) -

fragment(p) = f
Effects:

suibtree(f) := subtreeff) U subtree(g) U minedge(g) p

if 1) E Uxstse(f) theni [ 1

tesqt.;ct() := iests et(f) U nodes(g)

if dcstattus(p) finid then
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enqueue(FIND, dcqueue,((p, q)))

findcount(p) := findcount(p) + 1]1

delete g from fragments

Define the following predicates on states(DC), using these definitions.

A child q of p is completed if no node in subtree(q) is in tests et(fragment(p)),

and no REPORT is headed toward p in subtree(q) or in dcqueue((q,p)). Node p is up-

to-date if either subtree(fragment(p)) = {p}, or the following two conditions are met:

(1) following inbranches from p leads along edges of subtree(fragment(p)) toward and

over core(f), and (2) if p E tests et(fragment(p)), then dcstatus(p) = find. Given

node p, define Cp to be the set {r : either r = p and p testset(fragment(p)), or r

is in subtree(q) for some completed child q of p}.

All free variables are universally quantified, except that f = fragment(p), in

these predicates. (The fact that an old REPORT message, in a link that was formerl,

the core of a fragment, can remain even after that fragment has merged or been

absorbed, complicated the statement of some of the predicates.)

• DC-A: If REPORT(W) is in dcqucue((q,p)) and inbranch(p) 5 (p, q), then

(a) if (p,q) = core(f), then a FIND message is ahead of the REPORT in

dcqueue((q,p));

(b) (q,p) = inbranch(q);

(c) bestwt(q) = w;

(d) dcstatus(q)= unfind;

(e) every child of q is completed;

(f) q V testset(f); and

(g) if (p, q) # core(f), then dcstatus(p) = find, and q is a child of p.

* DC-B: If REPORT(W) is in dcqueue((q,p)) and inbranch(p) = (p, q), then

(a) either (p, q) = core(f) or p is a child of q; and

(b) if (p, q) $ core(f), then dcstatus(p)= unfind.

e DC-C: If REPORT(w) is in dcqueue((q,p)) and (p, q) core(f), then

(a) q is up-to-date;

(b) dcstatus(q) = unfind; and

(c) bestwt(q) = w.

- DC-D: If FIND is in dcqueuc((q,p)), then

(a) if (p, q) i core(f) then p is a child of q and dc.statuq(q) find;
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(b) dcstatus(p) unfind; and

(c) every node in subtree(p) is in testset(f).

" DC-E: If p E tests et(f), then a FIND message is headed toward p. or dcstatu.o(p)

find, or AfterMerge(q,r) is enabled, where p G subtree(r).

" DC-F: If (p,q) = core(f) and inbranch(q) # (q,p), then either a FIND is in

(Icqueue((p, q)), or AfterMerge(p, q) is enabled.

" DC-G: If AfterMerge(p,q) is enabled, then every node in subtrce(q) is in

testset(f).

* DC-H: If dcstatus(p) = unfind, then

(a) destatus(q) = unfind for all q C subtree(p); and

(b) findcount(p) = 0.

* DC-I: If dcstatus(p) = find, then

(a) p is up-to-date; and

(b) either a REPORT message is in subtree(p) headed toward p, or some q C
subtree(p) is in testset(f).

• DC-J: If dcstatus(p) = find and core(f) = (p, q), then a FIND message is in
dcqueue( (p, q)). or dcstatus(q) = find, or a REPORT message is in dcqueuc( (q. p)).

* DC-K: If p is up-to-date. then

(a) findcount(p) is the number of children of p that are not completed,

(b) if bestlink(p) nil. then bestwt(p) = oc. and there is no external link of

any node in Cp.

(c) if bestlink(p) € nil, then following bestlinks from p leads along edges in
.qubtrce(f) to the minimum-weight external link 1 of all nodes in C1,: ,t (1)

bestwi(p), and level(fragment(ci(arqet( 1))) > l~vcl(f).

* DC-L: If inbranch(p) , nil, then inbranch(p) = (p, q) for some q, and (p, q) C
.oubtree(f).

* DC-M: findcount(p) > 0.

9 DC-.: If mv,-rninnodc(f) is not in tct(f), then rnw-ninnode(f) is up-to-

date.

* DC-(): The oily possible values of dcqveu c{(p,q)) are empty, or vNi), or

[r{.EPO [. or FwN) followed by Rlci'owr (oi,- if (p,q) core(f)), or mREPowr

f)llowed by FIND (only if (p.q) 54 (:,ro'(f)).
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Let PDC be the conjunction of DC-A through DC-O.

In order to show that DC simulates GC. we define an abstraction mapping

., 4 = (S 4 , A 4 ) from DC to GC.

Define the function S4 from states(DC) to states(GC) by ignoring the message

queues, and the variables dcstatus, findcount, bestlink, bestwt, and inbranch. The
derived variables minlink and accmin of DC map to the (non-derived) variables
minlink and accmin of GC.

Define the function A 4 as follows. Let s be a state of DC and 7r an action of
DC enabled in s. The GC action ComputeMin(f) is simulated in DC when a node
adjacent to the core, having already heard from all its children, receives a REPORT

message over the core with a weight larger than its own bestwt. Then the node
knows that the minimum-weight external link of the fragment is on its own side of
the subtree.

" Suppose 7r = ReceiveReport((q,p), w). If (p, q) = core(f) and dcstaius(p) = un-
find and w > bestwt(p), then .A4(s, 7r) = ComputeMin(fragment(p)). Otherwise

A4(s, 7r) is empty.

* If 7r = ChannelSend((q,p),m), ChannelRecv((q,p),m), ReceiveFind((q,p)) or

AfterMerge(p,q), then A.,(s,7r) is empty.

" For all other values of 7r, A 4 (s,7r) = 7r.

The following predicates are true in any state of DC satisfying (PGcoS.4)APD(-.

Recall that PGc = (PCoM°oS2)APGc. If P,,(S 4 (s)) is true, then the GC predicates

are true in S 4(s), the COM predicates are true in S 2(S 4 (s)), and the HI predicates
are true in S1 (S 2(S 4 (s))). Thus, these predicates are deducible from PDC, together
with the GC, COM and HI predicates.

* DC-P: If REPORT(w) is at the head of dtqueue((q,p)) and (p,q) core(f) and
dcstatus(p) = unfind, then

(a) if w < bestwt(p), then the minimui-weight external link I of f is closer to

q than to p, and wt(l) = w;
(b) if w > bestwt(p). then the minimuni-weight external link 1 of f is closer to

p than to q, and wt(l) = be.stwt(p); and

(c) if it, beqtwt(p). th en w = oc and there is no external link of f.

Proof
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1. REPORT(W) is at head of dcqueue((q,p)), by qs3umption.

2. dcstatus(p) = unfind, by assumption.

3. (p, q) = core(f), by assumption.

4. q is up-to-date, by Claims 1 and 3 and DC-C(a).

5. dcstatus(q) = unfind, by Claims 1 and 3 and DC-C(b).

6. u, = bestwt(q), by Claims 1 and 3 and DC-C(c).

7. q V testset(f), by Claims 4 and 5.

8. No FIND is in dcqueue((q,p)), by Claims 1 and 3 and DC-O.

9. p is up-to-date, by Claims 2, 3, 4 and 8 and DC-T.

10. p V testset(f), by Claims 2 and 9.

11. findcount(p) = 0, by Claim 2 and DC-H(b).

12. findcount(q) = 0, by Claim 5 and DC-H(b).

13. All children of p are completed, by Claims 9 and 11 and DC-K(a).

14. All children of q are completed, by Claims 4 and 12 and DC-K(a).

15. If bestwt(p) = oo, then there is no external link of subtree(p), by Claims 9, 10

and 13 and DC-K(b) and (c).

16. If bestwt(p) j oo, then following bestlinks from p leads to the minimum-weight

external link I of subtree(p) and wt(l) = bcstwt(p), by Claims 9, 10 and 13, and

DC-K(b) and (c).

17. If bestwt(q) = w = cc, then there is no external link of subtree(q), by Claims 4,

6, 7 and 14 and DC-K(b) and (c).

18. If bestwt(q) = w : oc, then following bestlinks from q leads to the minimum-

weight external link I of subtree(q) and wt(l) = w, by Claims 4, 6, 7 and 14 and

DC-K(b) and (c).

Claims 3 and 15 through 18 give the result, together with the fact that edge

weights are distinct. 0

e DC-Q: If a REPORT is at the head of dcqueue((q,p)) and is not headed toward

rw.root(f), then inbranch(p) = (p, q).

Proof: If (p,q) = core(f). then inmranch(p) = (p,q) by DC-A(a). Suppose %

(pq) : core(f), and, in contradiction, that inbranch(p) # (p,q). By DC-A(g).

dcstatus(p) = find, and by DC-I(a) p is up-to-date, i.e., following inbranches from p

leads toward and over core(f). Thus the REPORT in dcqucue((q,p)is headed toward

both endpoilts of core(f), contradicting the hypothesis. U

e DC-R: If dcstatus(p) = find, then no REPORT is in dcqueue(inbranch(p)).

Proof. Let inbranch(p)-7 (1p. q).
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1. dcstatus(p) = find, by assumption.

2. p is up-to-date, by Claim 1 and DC-I(a).

3. Following inbranches from p leads toward and over core(f), by Claim 2.
4. Either (p, q) = core(f ), or inbranch(q) j (q, p), or no REPORT is in dcqueuc((p, q)),

by Claim 3 and DC-B(b).

5. If (p, q) = core(f), then no REPORT is in dcqueue((p, q)), by Claim l and DC-C(b).
6. If inbranch(q) # (q,p), then no REPORT is in dcqueue((p, q)), by Claim 1 and

DC-A(d).

7. No REPORT is in dcqueue((p, q)), by Claims 4, 5 and 6. 0

* DC-S: At most one FIND message is headed toward p.

Proof: Suppose a FIND message is headed toward p.

1. A FIND is in dcqueue((q, r)), by assumption.

2. p C subtree(r), by assumption.

3. dcstatus(r) = unfind, by Claim 1 and DC-D(b).

4. dcstatus(t) = unfind for all t C 3ubtree(r), by Claim 3 and DC-H(a).

5. No FIND message is in dcqueue( (t, u)), for any (t, u) E subtree(r), by Claim 4 and

DC-D(a).

If (q,r) = core(f), Claim 5 proves the result. Suppose (q,r) 3- core(f).

6. (q, r) # core(f), by assumption.

7. dcstatus(q) = find, by Claims 1 and 6 and DC-D(a).

8. dcstatus(t) = find for all t between q and the endpoint of core(f) closest to q, by

Claim 7 and DC-H(a).

9. No FIND message is in dcqueue((t,u)) for any (t, u) between core(f) and q, by

Claim 8 and DC-D(b).

Claim 9 completes the proof. El

e DC-T: If (p,q) = core(f), no FIND is in dcqueue((p,q)), p is up-to-date, and

dcstatus(q) = unfind, then q is up-to-date.

Proof:

1. (p, q) = core(f), by assumption.

No FIND is in dcqueue((p. q)), by assumption.

3. p is up-to-date, by assumption.

4. dcstatus(q) = unfind, by assumption.

5. No FIND is headed toward q, by Claims 1 aid 2 and DC-D(a).
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6. No FIND is in dcqueue((q, p)), by Claim 3 and DC-D(b) and (c).
7. AfterMerge(p, q) is nut enabled, by Claim 6.
8. inbranch(q) = (q,p), by Claims 5 and 7 and DC-F.
9. q testset(f), by Claims 4, 5 and 7 and DC-E.
10. q is up-to-date, by Claims 1, 8 and 9. El

Lemma 19: DC simulates GC via M 4 , PDc, and Poe.

Proof: By inspection, the types of DC, GC, M 4 , and PDC are correct. By Corol-
lary 16, P'c is a predicate true in every reachable state of GC.

(1) Let s be in start(DC). Obviously, PDC is true in s, and S4(s) is in
start(GC).

(2) Obviously, A 4 (s, 7r)jext(GC) = 7riext(DC).

(3) Let (s', 7r, s) be a step of DC such that P"Gc is true of 84(s') and PDC is

true of s'. For (3a) we verify below only those DC predicates whose truth in s is
not obvious.

i) 7r is Start(p), ChangeRoot(f), InTree(l), or NotlnTree(l). A 4 (S', 7r) =

7r. Obviously S4 (s')irS4(s) is an execution fragment of GC and PDC is true in s.

ii) 7r is ChannelSend(l,in) or ChannelRecv(1,m). A 4 (s',7r) is empty.
Obviously S 4 (s) = S4(s') and PDC is true in s.

iii) 7r is TestNode(p). Let f = fragment(p) in s'.

(3c) A 4 (5', 7r) = 7r. Obviously, r is enabled in S 4(s'). To show the effects
are mirrored in S4(s), we must show that accmin(f) is updated properly (which is
obvious) and that minlink(f) is unchanged. Since p E tes.tset(f) in s', minlink(f) =
nil in s' by GC-C. If accmin(f) : nil, or if p has an external link in s', then
accmin(f) # nil in s, and minlink(f) is still nil in s. If some q # p is in testset(f)
in s', then by DC-E either a FIND is in subtree(f) or dcstatus(q) = find; since the

same is true in s, minlink(f) is still nil in s. Finally, if accmin(f) = nil, p has no
external link, and p is the sole element of testset(f) in s', then f has no external
link in s' or in s, and minlink(f) is still nil in s.

(3a) Two cases are considered. First we prove some facts true in 1)0th cscs. S

Claim s about .': ale
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1. dcstatus(p) = find, by precondition.

2. p E testset(f), by precondition.

3. If (p, u), the minimum-weight external link of p, exists, then level(f) <

level(fragment(u)), by precondition.

4. p is up-to-date, by Claim 1 and DC-I(a).

5. No FIND is headed toward p, by Claim 1 and DC-D(c).

6. If (p,r) = core(f), then no REPORT is in dcqueue((p,r)), for any r, by Claim 1

and DC-C(b).

7. If a REPORT is in dcqueue((p,r)), then inbranch(r) = (r,p), for any r, by Claim

1 and DC-A(d).

8. AfterMerge(r,t), where p E subtree(t), is not enabled, by Claim 1 and DC-H(a).

9. If bestlink(p) = nil, then bestwt(p) = oo and there is no external link of any node

r, where r is in the subtree of any completed child of p, by Claims 2 and 4 and

DC-K(b).

10. If bestlink(p) 74 nil, then following bestlinks from p leads to the minimum-weight

external link I of all nodes r, where r is in the subtree of any completed child of p;

zwt(l) =bestwt(p) and level(f) ! level(fragment(target(l))), by Claims 2 and 4 and

DC-K(c).

Case 1: findcount(p) j 0 in s'.

More claims about s':

11. findcount(p) :A 0, by assumption.

12. findcount(p) > 0, by Claim 11 and DC-M.

13. Some child r of p is not completed, by Claims 4 and 12 and DC-K(a).

14. There is a child r of p such that either some node in subtree(r) is in testset(f),

or a REPORT is in subtree(r) or dcqueue((r,p)) headed toward p, by Claim 13.

DC-A(c): By Claim 7. changing bestwt(p) and removing p from testset(f) are

OK.

DC-C: By Claim 6, changing bestwt(p) is OK.

DC-D(c): By Claim 5, removing p from testset(f) is OK.

DC-G: By Claim 8 and the fact that dcstatus(p) is still find in s. removing p

from testset(f) is OK.
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DC-I(b): By Claim 14, removing p from testset(f) is OK.

DC-K: (b) By Claim 9 and code. (c) by Claims 3 and 10 and code. .

DC-N: If p is mw-minnode(f), then by Claim 4, removing p from testset(p) is

OK.

Case 2: findcount(p) = 0 in s'. Let (p, q) = inbranch(p).

More claims about s':

15. findcount(p) = 0, by assumption.

16. If (p,q) = core(f) and inbranch(q) # (q,p), then a FIND is in dcqueue((p, q)),

by Claim 5 and DC-F.

17. All children of p are completed, by Claims 3 and 15 and DC-K(a).

18. If (p, q) : core(f), then dcstatus(q) = find, by Claim 1 and DC-H(a).

19. If REPORT is in dcqueue((q,p)), then (p,q) = core(f), by Claim 4 and DC-B(a).
20. No REPORT is in dcqueue((p, q)), by Claim 1 and DC-R.

21. If FIND is in dcqueue((p, q)), then (p, q) = core(f), by Claim 4 and DC-D(a).

22. Every node r : p in subtree(p) has dcstatus(r) = unfind, by Claims 1 and 17

and DC-I(b).

23. Every node r 5 p in subtree(p) has findcount(r) = 0 by Claim 22 and DC-H(b).

DC-A: By Claim 7 and the fact that inbranch(p) = (p, q), we need only consider
the REPORT added to dcqueue((p,q)). (a) by Claim 16. (b), (c) and (d) by code.

(e) by Claim 17. (f) by code. (g) by Claims 4 and 18.

DC-B for REPORT added to dcqueue((p, q)): If inbranch(q) = (q,p), then (p, q) =

core(f), by Claim 4. N

DC-B for REPORT that might be in dcqueue((q,p)): by Claim 19.

DC-C: By Claim 4, inbranch(p) is the only relevant link; by Claim 20, the new
message is the only REPORT in that queue. (a) by Claim 4. (b) and (c) by code.

DC-D(a) and (c): By Claim 5, it is OK to change dcstatus(p) to unfind and

remove p from testset(f). %

DC-E: The addition of a REPORT to dcqueuc((p,q)) in s cannot cause Aftcr-
Merge(q,p) to go frn)m enabled in .s' to disabled in s, by Claim 1.
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DC-F: Cf. DC-E.

DC-G: By Claim 8 and the addition of REPORT to dcqueue((p,q)), removing p

from testset(f) is OK.

DC-H: (a) By Claim 22 and code. (b) By Claim 23.

DC-I(b): Suppose r 5 q is some node such that p E subtree(r) and dcstatus(r) -

find in s'. By Claim 4, removing p from testset(f) is compensated for by adding

REPORT to dcqueuC((p,q)).

DC-J: By Claim 4, the only link of p that can be part of core(f) is (p, q). If

(p, q) = core(f) and dcstatus(q) = find, then the fact that dcstatus(p) becomes

unfind in s is compensated for by the addition of REPORT to dcqueue((p, q)).

DC-K(b) and (c): As in Case 1.

DC-N: As in Case 1.

DC-O: By Claims 20, 21 and code.

iv) 7r is ReceiveReport((q,p),w). Let f = fragment(p) in s'.

(3b)/(3c) Case 1: (p,q) = core(f) and dcstatus(p) = unfind and w > bestwt(p)

in s'. A 4 (s',7r) = ComputeMin(f).

Let (r, t) be the minimum-weight external link of f in s'. (Below we show it

exists.)

Claims about s': ""

1. REPORT(w) is at the head of dequeue((q,p)), by precondition.

2. (p, q) = core(f), by assumption.

3. destatus(p) = unfind, by assumption.

4. w > bestwt(p), by assumption.

5. No FIND is in dcqueue((q,p)), by Claim 1 and DC-O.

6. q is up-to-date, by Claims 1 and 2 and DC-C(a).
7. i; i.' up tc, by Claims 2, 3, 5 and 6 and DC-T. e

S. dcstatus(q) = unfind. by Claims 1 and 2 and DC-C(b).

9. bestwt(q) = w, by Claims I and 2 nad DC-C(c).

10. p = mw-root(f) (so (r, t) exists), by Claims 1, 2, 3 and 4 and DC-P(b).

11. minlink(f) nil, by Claims 1 and 10. *bA
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12. findcount(p) = 0, by Claim 3 and DC-H(b).

13. findcount(q) = 0, by Claim 8 and DC-H(b).

14. Every child of p is completed, by Clains 7 and 12 and DC-K(a).

15. Every child of q is completed, by Claims 6 and 13 and DC-K(a).

16. p V testset(f), by Claims 3 and 7.
17. q V testset(f), by Claims 6 and 8.

18. testset(f) = 0, by Claims 14 through 17.

19. accmin(f)= (r,t), by Claims 11 and 18.

By Claims 11, 18 and 19, ComputeMin(f) is enabled in s'.

Now we must show that the effects of ComputeMin(f) are mirrored in s. All
that must be shown is that minlink(f) and accmin(f) are updated properly.

More claims about s':

20. dcstatus(u) = unfind, for all u E subtree(p), by Claim 3 and DC-H(a).
21. dcstatus(u) = unfind, for all u E subtrce(q), by Claim 8 and DC-H(a).

22. No REPORT is headed toward p in subtree(p), by Claim 14.

23. No REPORT is headed toward q in subtree(q), by Claim 15.

24. Only one REPORT is in subtree(p), by DC-O.
25. No FIND is in subtree(f), by Claim 18 and DC-D(c).
26. Following bestlinks from p leads to (r, t), by Claims 7, 10, 14 and 16 and DC-K(b)

and (c).

By Claims 10 and 20 through 26, minlink(f) = (r,t) in s. By Claim 19, this is

the correct value. Thus, accmin(f) = nil in s.

Case 2: (p,q) 74 core(f) or dcstatus(p) = find or w < bestwt(p) in s'. A 4 (s', 7r)

is empty. We just need to verify that minlink(f) and accmin(f) are unchanged in

order to show that S4 (s') = S 1 (s).

Subcase 2a: (p,q) # core(f) in s'.

Suppose (p, q) = inbranch(p) in ,'. By DC-B(b), dcstatus(p) = unfind, so the
only effect is to remove the REPORT. By DC-B(a)., p (E subtree(q), so this REPORT

imessage is not headed toward rnw-root(f) in s'. Thus ?ninlink(f) is unchanged, and
accmin(f) is also unchanged.

Sulppose, (p, q) :A inbranch(p) in .s'.
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Claims about s':

1. REPORT(w) is at the head of dcqucue((q,p)), by prec,)nditiOl.

2. (p, q) 4 inbranch(p), by assumption.

3. (p,q) # core(f), by assumption.

4. dcstatus(p) = find, by Claims 1, 2 and 3 and DC-A(g).

5. p is up-to-date, by Claim 4 and DC-I(a).

6. Following inbranches from p leads toward and over core(f), by Claim 5.
7. A REPORT message is headed toward rno-root(f), by Claims 1 and 6.

S. minlink(f) = nil, by Claim 7.

9. If core(f) (p,t) for sonie t, then FIND is in dcqueue( (p, t)), dcstatus(t) = find,

or REPORT is in dcqueue((t,p)), by Claim 4 and DC-J.

Claims about .s:

10. subtree(f), core(f), nodes(f), and testset(f) do not change, 'y code.

11. REPORT is in inbranch(p), by code.

12. Following inbranches from p leads toward and over core(f), by Claims 6 and 10
and code.

13. If p # rnw-root(f), then REPORT is headed toward rmw-root(f), by Claims 11

and 12.

14. If p = rw-root(f), then FIND is in dcqueue( (p, t)), dcstatus(f) = find, or REPOR'i

is in dcqucue((t,p)), where (p,t) = core(f), by Claim 9 and code.

15. minlink(f) = nil, by Clairs 13 and 14.

16. accmin(f) (loes not chalnge, by Claims 8, 10 and 15.

Claims 15 and 16 give the result.

Subcasc 2b: (p,q) = corr(f) and dcstatu.R(p) = find ill .'. Since H EPORT(w )

is at the hea(d of dcqucuc( (q, p) ), DC-A(a.) im)lies that inbranch(p) = (p,q). The

only change is that the Ru'IPOR'T message is reqiueued. Obviously minlink(f) and

accmin(f) are unchang('(I.

Subcaqc 2c: (p,q) - corc( f) an(l dcstatnis(p) -- infind and 'w < bcfAt)(p) ii1

.'. As in Subcase 21), j'branch(lp) = (pq). Tl it onily (change is that the H oi)o
inessage is remo)ve(d. If i, = bcshwt(p). (ien I)y DC-P(,'), there, is no external link of
f iq .' or in .,. Thus milink(f) arid accmn(f) ;)re both mfl in .s' and ..
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Suppose w < bestwt(p). By DC-P(a), q = mw-root(f). Thus the REPORT
message in dcqueue((q,p)) is not headed toward mw-root(f) in s', and no criteria,
for minlink(f), or accmin(f) changes.

(3a) Case 1: (p,q) = inbranch(p) in s'.

Suppose dcstatus(p) = find. By DC-D(b), no FIND is in dcqueue((q,p)) in s'.
so by DC-O, dcqueue((q,p)) contains just the one REPORT message in s'. Since the

only effect is to requeue the message, the DC state is unchanged.

Suppose dcstatus(p) = unfind. The only change is the removal of the REPORT

message from dcqueue((q, p)). By DC-B(a), either (p, q) = core(f), or p E subtree(q)
in s'. In both cases, the REPORT is not headed toward any node whose subtree it is

in.

DC-I(b): By remark above.

DC-J: Even though REPORT is removed from dcqueue((q,p)), dcstatus(p)

unfind in s.

DC-K(a): By remark above, removing the REPORT does not affect the com-

pleteness of any node's child.

Case 2: (p,q) 54 inbranch(p). Let (p,r) = inbranch(p).

C.'-ims about s':

1. REPORT(W) is at head of dcqueue((q,p)), by precondition.

2. (p,q) 7 inbranch(p), by assumption.

3. (p, q) # core(f), by Claims 1 and 2 and DC-A(a).

4. (q, p) inbranch(q), by Claims 1 and 2 and DC-A(b).

5. i, = bestwt(q), by Claims 1 and 2 and DC-A(c).
6. dcstatus(q) = unfind, by Claims 1 and 2 and DC-A(d).

7. Every child of q is completed, by Claims 1 and 2 and DC-A(e).

S. q V' tc.,t.t(.f), by Claims 1 and 2 and DC-A(f).

9. dcstatui,(p) = find, by Claim 3 and DC-A(g).
10. If REPORT is in dcqueue(p,t), then inbranch(t) (t,p), for any t, by Claim 9

and DC-A(d).
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11. p is up-to-date, by Claim 9 and DC-I(a).

12. inbranch(p) leads toward and over core(f), by Claim 11.

13. q is an uncompleted child of p, by Claims 1, 2 and 12.

14. findcount(p) > 1, by Claims 11 and 13 and DC-K(a).

15. Only one REPORT is in dcqueue((q,p)), by Claim 1 and DC-O.

16. q is up-to-date, by Claims 4, 8 and 12.

17. If REPORT is in dcqueue((p,t)), then (p,t) 0 core(f), for all t, by Claim 9 and

DC-C(b).

18. If bestwt(p) = 00, then there is no external link of p (if p V testset(f)) or of any

node in the subtree of any completed child of p, by Claim 11 and DC-F(b) and (c).

19. If bestwt(p) 3 00, then following bestlinks from p leads to the minimum-

weight external link I of all nodes in Cp; wt(l) = bestwt(p); and level(f) <

level(fragment(target(l))), by Claim 11 and DC-F(b) and (c).

20. If w = oo, then there is no external link of subtree(q), by Claims 5, 7, 8 and 16

and DC-K(b) and (c).

21. If w 0 co, then following bestlinks from q leads to the minimum-weight external

link I of subtree(q); wt(l) = w, and level(f) < level(fragment(target(l))), by Claims

5, 7, 8 and 16 and DC-F(b) and (c).

Subcase 2a: p E testset(f) or firndcount(p) # 1 in s'.

More claims about s':

22. p E testset(f) or findcount(p) 0 1, by assumption.

23. If findcount(p) : 1, then findcount(p) > 1, by Claim 14.

24. If findcount(p) 1, then some child t 6 q of p is not completed, by Claims 11

and 23 and DC-K(a).

25. If findcount(p) = 1, then p E testset(f), by Claim 22.

DC-A(c): by Claim 10, any change to bestwt(p) is OK.

DC-C: By Claim 17, changing bestwt(p) is OK.

DC-F: Cf. DC-G.

DC-G: Removing REPORT from dcqueue((q,p)) does not cause AfterMerge(p, q)

to become enabled, by Claim 3.

DC-I(b): Let f be some node such that p E subtrce(t) and dcstatus(t) = find in b

.'. By Claims 24 and 25, either a REPORT nessage is in subtrec(p) headed toward
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p (and hence toward t), or some node in subtree(p) (and hence in subtree(t)) is in

testset( f).

DC-J: The removal of the REPORT message is OK by Claim 3.

DC-K(a): Since findcount(p) is decremented by 1, we just need to show that the

number of uncompleted children of p decreases by 1: by Claim 1, q is not completed
in s'. By Claims 7, 8 and 15 and code, q is completed in s.

DC-K(b) and (c): by Claims 18, 19, 20 and 21 and code.

DC-M: By Claim 14 and code.

Subcase 2b: p V test3 tt(f) and finmLouni(pj 1.

26. p V testset(f), by assumption.
27. findcount(p) = 1, by assumption.
28. No FIND is headed toward p, by Claim 9 and DC-D(b).
29. If (p,r) = core(f) and inbranch(r) :A (r,p),then FIND is in dcqueue((p,r)), by

Claim 28 and DC-F.
30. No REPORT is in dcqueue((p, r)), by Claim 9 and DC-R. •
31. Every child of p but q is completed, by Claims 11, 13, 27 and DC-K(a).

32. No FIND is in dcqueue((p,t)), t : r, by Claims 7, 8 and 31 and DC-D(c).
33. If REPORT is in dcqueue((r,p)), then (p,r) = core(f), by Claim 9 and DC-B(a)

and (b).
34. If (p, r) j- core(f), then dcstatus(r) = find, by Claims 9 and 12 and DC-H(a).

35. If FIND is in dcqueue((p, r)), then (p,r) = core(f), by Claim 12 and DC-D(a).

DC-A: By Claim 10 and the fact that inbranch(p) = (p, r)), we need only
consider the REPORT added to dcqueuc((p, r)). (a) by Claim 29. (b), (c) and (d) by .

code. (e) by Claim 31 for any child of p except q: by Claims 7, 8 and 15 and code
for q. (f) by Claim 8. (g) by Claims 12 and 34.

DC-B for REPORT added to dcqueue((p,r)): if inbranch(r) = (rp), then by

Claim 12, core(f) = (p,r).

DC-B for REPORT in dcqueue((r, p)): By Claim 33, core(f) = (p. r).

DC-C: By Claim 12, inbranch(p) i; the only relevant link; by Claim 30, the
new message is the only REPORT message in its queue. (a) by Claim 11. (b) and (c)
bv code.
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DC-D(a): By Claims 32 and 35, changing dcstatus(p) to unfind is OK.

DC-E: The addition of the REPORTr to dcqucte((p,r)) in s cannot caws,.

AfterMerge(r,p) to go from enabled in s' to disabled in ;, because dcstatus(p)

find in s' by Claim 9.

DC-F: Cf. DC-E.

DC-H(a): By Claims 7 and 8, no node in subtree(q) is in testset(f). By Claim

31, no node in subtree(t), for any child t j q of p, is in testset(f). By Claim 23,

p ' testset(f).

DC-H(b): By Claim 27 and code.

DC-I(b): Let t : p be such that p E subtrec(t) and dctatus(t) = find in s'. By

Claim 12, removing the REPORT from dcqu.eue((q,p)) is compensated for by adding

the REPor to dcqueue((p,r)).

DC-J: By Claim 12, the only link of p that can be part of core(f) is (p, r). If

(p, r) = core(f) anl dcstatus(q) = find in s', then changing dcstatus(p) to unfind in
. is compensated for by adding the REPORT to dcqueuc((p, r)).

DC-K: As in Subcase 2a.

DC-M: Claim 27 and code.

DC-O: by Claim 30 and DC-O and c(, le.

v) 7r is ReceiveFind((q,p)). Let f = fra gment(p).

(31)) A4 (7',r) is empty. To show that S 4 (s') = S4 (8), we just need to show

that minlink;(f) and accmin(f) are unchanged. Because of the FINDi message,

minlink(f) --- nil in . ', and minlink(f) = il in s since dcqtatus(p) = find. Since

there is no change to minlink(f), nodes(f), hte.tset(f), or subtree(f), accmin(f) is
unchanged ...

(3a) Claim.s about .N'

1. FINI) is at head of dcque ttc( (q, p)), by )reconditi(on.

2. AfterMerge:(p,q) is not enfabled, by preco(dition.

3. If (p, q) # corc(f), tiliem p is a child of q, by Claim 1 and DC-D( a).

4. If (p, q) corr(f), then dc' tatu'S( l)=fid(1, b y Claii i and DC-D( a ).

8O
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5. dcstatus(p) = unfind, by Claim 1 and DC-D(b).
6. Every node in subiree(p) is in test,4t(f), by Claim 1 and DC-D(c).
7. No REPORT is in dcqueue((p,r)) with inbranch(r) : (r,p), for all r, by Claim 6
and DC-A(f).

S. If REPORT is in dcqueue((p, r)), then (p,r) $ core(f). for all r, by Claim 6 and

DC-C.
9. If REPORT is in dcqueue((q,p)), then (p,q) = core(f), by Claim 1 and DC-O.

10. If (r,p) G subtree(f), r :A q, then r is a child of p, by Claim 3.
11. No REPORT is in dcqueue((r,p)), r € q, with inbranch(p) 5 (p, r)), by Claims 6
and 10 and DC-A(f).
12. No REPORT is in dcqueue((r,p)), r _ q, with inbranch(p) = (r, r), by Claim 10
and DC-B(a).
13. If (p, r) E S, then r is a child of p, by Claim 10.
14. dcstatus(r) = unfind for all r E subtree(p), by Claim 5 and DC-H(a).
15. If (p,q) J= core(f), then dcstatus(r) = find, for all r such that q E subtrec(r),

by Claim 4 and DC-H(a).
16. dcqueue((p,r)) is either empty or contains only a REPORT for all r such that
(p, r) G S. by Claims 5 and 13 and DC-D(a) and DC-O.
17. If (p, q) # core(f), then following inbranches from q leads toward and over

core(f), by Claim 4 and DC-I(a).

DC-A(a): By Claim 7, we need not consider any REPORT in a link leaving p.
Bv Claim 11 we need not consider any REPORT in a link coming into p, except for
(q.p). Since inbranch(p) is set to (p. q) in s, removing FIND from dcqueue((q.p)) is
0K.

DC-B: By Claim 9 and 12, changing dcstatus(p) is OK.

DC-C: By Claim S. changing dconfu,..( 1 ) aml bc.qwt(p) is OK.

DC-D: (a) by Claim 13 and code. (b) ly Claim 14. (c) by Claim 6.

DC-E: By Claim 12 and codle (addinig FIND messages and setting dcs at, 1))
1(, fild). renloving fIND fronm dcqueu;((q.p)) is OK.

DC-F: As arg ied for DC-J(a ). the only possible link of p that is part of cord .f)
i' /,. q) . Sici c(,(l, set z hralr l, to {p,. q). relioving the FIND) is ()I .

, I '-LB a: If (,. q c,r,( f . tihe'l cli;iiiiiig dr.0abhop) to find is ON. If (1. () /
, l). th ) Clim 15 ilnplivs tl;,t it i (}J%' to) cliatige ic.ntu.(p)to fl(I.
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DC-I: (a) If (p, q) = core(f), then code gives the result, since inbranch(p) is set
to (p, q) and dcstatus(p) is set to find. If (p, q) :A core(f), then Claim 17, the fact

that p is a child of q by DC-D(a), and code give the result. (1)) by Claim 6.

DC-J: By Claims 1 and 2.

DC-K: (a) findcount(p) = iSI = number of children of p. None is complete, by
Claim 6. (b) and (c) are true by code, since no children are complete.

DC-L: by code and Claim 3.

DC-M; by code.

DC-O: Removing the FIND from dcqueue((q,p)) is OK. Adding FIND to de-

queue((p, r)), (p, r) E S, is OK by Claim 16.

vi) 7r is Merge(fg).

(3c) A4(s', 7,) = 7,. Obviously 7r is enalbled in S 4 (s'). Effects are mirrored in
S 4(.s) if we can show accmin(h) = minlink(h) = nil in s. Inspecting the code reveals
that in s, a FIND message is in subtree(h), so minlink(h) = nil, and nodes(h)
testset(h), so accmin(h) = nil.

(3a) Claims about s':

1. f $ g, by precondition.

2. rootchanged(f) = true, by precondition.
3. rootchanged(g) = true, by precondition.

4. rninedge(f) = minedge(g), by pr'condition.

5. ninlink(f) 5 nil, by Claim 2 and COM-B. (

Let (p, q) = minlink(f).
6. minlink(g) (q,p), Ly Claims 1, 1 and 5. b

7. No REPORT is headed toward root(f), v (laim 5.

S. No REPORT is headed toward root(g), by Claim 6.
9. NO FIND is in subtree(f), by Claim 5.

10. No FIND is in qubtrec(g), by Claim 6.
11. dcstatuq(r) infind for all r E nodes(f). by Claim 5.
12. dcstatu.(4r) = iinfind for all " node.(q), y Claim 6.

13. (p. q) is the niinimuim-weight external link of f, by Claim 5 and COM-A.

14. (qp) is the minimni-weight external link of q, by Claim 6 and COM-A.

15. tcstset(f) 0, bv ('laini 5 and GC-C.
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16. testset(g) = 0, by Claim 6 and GC-C.

17. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) E
subtree(f), by Claims 9 and 11 and DC-A(a) and (f).

18. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) C
subtree(f), by Claims 10 and 12 and DC-A(a) and (f).

19. If REPORT is in dcqueue((r, t)) and (r, t) = core(f), then r = root(f), by Claim

7.
20. If REPORT is in dcqueue((r,t)) and (r,t) = core(g), then r = root(g), by Claim

8.
21. If REPORT is in dcqueue((r, t)) and (r, t) # core(f), then t is a child of r, for all

(r,t) E subtree(f), by Claim 17 and DC-B(a).
22. If REPORT is in dcqueue((r,t)) and (r,t) # core(g), then t is a child of r, for all
(r,t) E subtree(g), by Claim 18 and DC-B(a).
23. If REPORT is in dcqueue((r, t)), then (r,t) is not on the path between root(f)
and p, for all (r,t) E subtree(f), by Claims 5, 7, 13, 15 and 17 and DC-N.
24. If REPORT is in dcqueue((r.t)), then (r,t) is not on the path between root(g)
and q, for all (r,t) E subtree(g), by Claims 6, 8, 14, 16 and 18 and DC-N.
25. dcqueue((p, q)) is empty, by Claim 13 and DC-A(g), DC-B(a) and DC-D(a).

26. dcqueue((q,p)) is empty, by Claim 14 and DC-A(g), DC-B(a) and DC-D(a).
27. findcount(r) = 0 for all r E nodes(f), by Claim 11 and DC-H(b).
28. findcount(r) = 0 for all r E nodes(g), by Claim 12 and DC-H(b).

Claims about s:

29. subtree(h) is the old subtree(f) and subtree(g) and (p, q), by code.
30. core(h) = (p,q), by code.

31. testset(h) = nodes(h), by code.

32. dcqueue((p, q)) contains only a FIND, by Claim 25 and code.
33. No FIND is in any other link of subtree(h), by Claims 9, 10 and 29.

34. dcstatus(r) = unfind for all r E nodes(h), by Claims 11, 12 and 29.
35. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r, t) C

.'ubtree(h), by Claims 17, 18, 25, 26 and 29.

36. If REPORT is in dcqueue((r, t)), then t is a child of r, for all (r,t) E subtrce(b),
by Claims 21 through 26 and 28.

37. AfterMerqe(q,p) is enabled, by Claims 30, 32, 33 and 34.

38. drqucue( (t.p)) is enipty, by Claim 26.
:39. findcol.t(r) = 0 for all r E nodes( h), by Claims 27, 28 and 29.

DC-A: Vacuously true. by Claini 35.
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DC-B: By Claims 34 and 36.

DC-C: By Claims 30, 32 and 38.

DC-D: The only FIND is in dcqueue((p, q)), by Claims 32 and 33. (a) by Claim

30. (b) by Claim 34. (c) by Claim 31.

DC-E: By Claim 32 for subtree(q); by Claim 37 for subtree(p).

DC-F: By Claims 32 and 37.

DC-G: By Claim 31.

DC-H: (a) by Claim 34. (b): by Claim 39.

DC-I: Vacuously true by Claim 34.

DC-J: Vacuously true by Claim 34.

DC-K: By Claims 31 and 34, none is up-to-date.

DC-M: By Claim 39.

DC-N: Vacuously true by Claim 31.

DC-O: By Claim 30.

vii) r is AfterMerge(p,q). Let f = fragment(p).

(3b) A44(S', 7r) is empty. We just need to show that accmin(f) and minlink(f)
do not change. The FIND message(s) imply that minlink(f) = nil in both s' and s.
Since there is no change to minlink(f), nodes(f), testset(f), or subtree(f), accmin(f)

does not change.

(3a) Claims about s':

1. (p,q) = core(f), by precondition.

2. FIND is in dcqueue((q,p)), by precondition.

3. No FIND is in dcqueue((p,q)), by precondition.

4. dcstatus(q) - unfind, by precondition.
5. No RUPORT is in dcqueue((q,p)), by precondition.

6. Every node in subtree(q) is in testset(f). i)y Claims 1 through 5 and DC-G.
7. p E testset(f), by Claim 2 and DC-D(c). -M
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8. No REPORT is in dcqueue((p, q)), by Claim 7 and DC-C. k
9. dcqueue((q, p)) consists solely of a FIND, by Claims 2 and 5 and DC-O.

10. dcqueue((p,q)) is empty, by Claims 3 and 8 and DC-O.

11. (p,q) E subtree(f), by Claim 1 and COM-F.

Claims about s:

12. (p,q) = core(f), by Claim 1.

13. Every node in subtree(q) is in testset(f), by Claim 6.

14. dcqueue((q,p)) consists solely of FIND, by Claim 9.

15. dcqueue((p,q)) consists solely of FIND, by Claim 10 and code.

16. dcstatus(q) = unfind, by Claim 4.

17. AfterMerge(p, q) is not enabled, by Claim 15.

18. AfterMerge(q,p) is not enabled, by Claim 14.

DC-D: (a) by Claim 12. (b) by Claim 16. (c) by Claim 13.

DC-E: By Claim 15 (FIND in dcqueue((p,q)) replaces AfterMerge(p,q) being

enabled).

DC-F: By Claim 15 (FIND in dcqueue((p,q)) replaces AfterMerge(p,q) being

enabled).

DC-G: vacuously true by Claims 17 and 18.

DC-O: By Claim 15.

viii) 7r is Absorb(fg).

(3c) A 4 (s',7r) = 7r. Obviously 7r is enabled in S 4 (s'). Effects are mirrored in

S 4(s) if we can show that accmin(f) and minlink(f) do not change.

Case 1: p E testset(f) in s'. By GC-C, minlink(f) = nil in s'. By inspecting

the code. a FIND message is in subtree(f) in s, so minlink(f) = nil in s also.

Suppose accmin(f) = nil in s'. Then there is no external link of any q E ,4-

nodes(f)- testset(f) in s'. Since testset(f) does not change and no formerly internal

links become external, accmin(f) = nil in s also.

Suppose accmin(f)= (q, r) in s'. By GC-A, level(f) < level(fragment(r)). So

by precondition, fragment(r) j g. Since all of nodes(g) is added to testset(.f), there

is no change to nodes(f) - tcstset(f). Tius accrnin(f) is unchanged.
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Case 2: p tests et(f) in s'.

Claims about s':

1. rootchanged(g) = true, by precondition.

2. level(g) < level(f), by precondition.

3. minlink(g) = (q,p) 7 nil, by precondition.

4. fragment(p) = f, by precondition.

5. dcstatus(r) = unfind for all r E nodes(g), by Claim 3.

6. No FIND message is in subtree(g), by Claim 3.
7. No REPORT message is headed toward mw-root(g), by Claim 3.

8. root(g) = mw-root(g), by Claim 3 and COM-A.
9. wt(l) > wt(q,p) for all external links I of g, by Claim 3 and COM-A.

10. If minlink(f) = (r,t), then level(fragment(t)) > level(f), by COM-A.

11. If minlink(f) = (r,t), then g fragment(t), by Claims 2 and 10.

12. If accmin(f) = (r,t), then level(fragment(t)) >_ level(f), by GC-A.

13. If accmin(f) = (r,t), then g : fragment(t), by Claims 2 and 12.

If minlink(f) = nil in s', then obviously it is still nil in s. Suppose minlink(f) =

(r,t) in s'. By Claims 5, 6, 7, 8 and 11 (and code), minlink(f) = (r,t) in s as well.

If accmin(f) = (r,t) in s', then it is unchanged in s by Claims 9 and 13.
Suppose accmin(f) = nil in s'. If this is because minlink(f) 5 nil in s', then,

since we just showed that minlink(f) does not change, accmin(f) is still nil in s.

Suppose accmin(f) = nil not because minlink(f) = nil, but because no node in

nodes(f) - tests :*(f) has an external link. But by the assumption for this case,
p V testset(f), yet it is in nodes(f) by Claim 4, and (p, q) is an external link of p

by Claim 3 and COM-A.

(3a) We consider two cases. First we prove some facts true in both cases.

Claims about s':

1. rootchanged(g) = true, by precondition.

2. level(g) < level(f), by precondition.

3. minlink(g) = (q,p), by precondition.

4. p E nodes(f), by precondition.

5. No REPORT is headed toward root(g), by Claim 3.

6. No FIND is in subtree(g), by Claim 3.
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7. dcstatus(r) -- ui ind, for all r E nodes(g), by Claim 3.

8. (q, p) is the minimum-weight external link of g, by Claim 3 and COM-A.

9. testset(g) = 0, by Claim 3 and GC-C.

10. q is up-to-date, by Claim 9 and DC-N.
11. Following bestlinks from q leads toward and over core(g), by Claim 10.

12. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) E
subtree(g), by Claims 6 and 7 and DC-A(a) and (f).

13. If REPORT is in dcqueue((r,t)) and (r,t) = core(f), then r = root(g), for all

(r,t) E subtree(g), by Claim 5.

14. If REPORT is in dcqueue((r,t)) and (r,t) i core(f), then t is a child of r, for all

(r,t) E subtr,:e(g), by Claim 9 and DC-B(a).

15. If REPOWT is in dcquev.e((r,t)). then (,,t) is not on the path between root(g)

and q, for all (r,t) E .,abtrcc(g), by Claims 3, 5, S. 9 and DC-N.

16. No REPORT is headed toward q, by Claims 5, 14 and 15.
17. dcqueue((p,q)) and dcqueue((q,p)) are empty, by Claim 8 and DC-A(g), DC-

B(a) and DC-D(a).

Case 1: p € testset(f).

More claims about s':

18. p testset(f), by assumption.

19. AfterMerge(r,t), where p E subtree(t), is not enabled, by Claim 18 and DC-G.

20. No FIND is headed toward p, by Claim 18 and DC-C(a).

DC-A: By Claim 12, vacuously true for any REPORT in old r, For a REPORT

that could be in some dcqueue((r,t)) with p C subtree(t): (e) by Claims 16 and 17.

DC-B: By Claim 16, change in location of core for nodes formerly in g is OX.

DC-D(a): by Claim 6, change in location of core for nodes formerly in g is OK.

By Claim 20, it is OK riot to add nodes(g) to testset(f).

DC-G: By Claim 19, vacuously true.

DC-H(a): By Claim 7.

DC-K: Choose any up-to-date node r in nodes(f) in s. By Claims 7 and 11
and code, no node that is in nodes(g) in .,' is up-to-date in s. Thus ,' is in nodcs(f)
Ill.,, ;%nd i p t, t,
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(a) If r p, then findcount(p) is changed (incremented by 1) if and only if the

number of children of p that are not completed is chaiged (increased by 1). If r € p,
then neither findcount(r) nor the number of children of r that are not completed is

changed.

(b) Suppose bestlink(r) = nil in s. Then the same is true in s'. By DC-K(b),
bestwt(r) = 00 and there is no external link of Cr in s'. In going to s, there is no

change to bestwt(r), and no internal links become external.

(c) Suppose bestlink(r) # nil in s. Then the same is true in s'. Let I be the
minimum-weight externai link of Cr in s'. By DC-K(c), following bestlinks from r

leads to 1, wt(l) = bestwt(r), and level(h) > level(f), where h = fragment(target(l)),
in s'. By the precondition on level(g), h 7 g in s', and thus I is still external in s.

If p Cr in s', then Cr is unchanged in s, and the predicate is still true. Suppose

P E Cr in s'. By COM-A, wt(p, q) is less than the weight of any other external link
of g, and thus wt(l) is less than the weight of any external link of g in s'. Thus

adding all the nodes of g to Cr in going to s does not falsify the predicate.

DC-O: By Claim 6, the former core(g) is OK.

DC-N: Let I be the minimum-weight external link of f in s'. If I # (p, q), then

wt(l) < wt(p, q), and by Claim 8, wt(l) < wt(l') for any external link ' of g. Thus,
in s, I is still the minimum-weight external link of s, and DC-N is true in s. 'A

Now suppose I = (p, q). By DC-N and Claim 18, p is up-to-date. But by DC-
K(b) and (c), bestlink(p) = (p, q) and level(f) < level(g), wich contradicts Claim

2.

Case 2: p E testset(f).

More claims about s':

21. p E testset(f), by assumption.

22. For all (r, t) such that p E sbtree(r) and inbranch(t) (t, r), no REPORT is in
dcqueue((r,t)), by Claim 21 and DC-A(e).
23. A FIND is headed toward p, or dcstatus(p) = find, or AfterMerge(r, t) is enabled,

where p E subtree(t), by Claim 21 and DC-E.
I

DC-A(e): by Claim 22, the addition of uncompleted child q to p is OK.
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DC-B: As in Case 1.

DC-D: As in Case 1.

DC-E: By Claim 23.

DC-G: By code, since all of nodes(g) is added to testset(f).

DC-H: By Claim 7.

DC-K: As in Case 1. .0

DC-M: By code, since findcount(p) is incremented. 6

DC-N: By code, since all of nodes(g) is added to testsei(f).

DC-O: By Claim 17 and code.

Let P c = (P'c o S4) A PDC.

Corollary 20: PDc is true in every reachable state of DC.

Proof: By Lemmas 1 and 19. 0

4.2.5 NOT Simulates COM

This automaton refines on COM by implementing the level and core of a
fragment with local variables nlevel(p) and nfrag(p) for each node p in the fragment,
and with NOTIFY messages. When two fragments merge, a NOTIFY message is sent
over one link of the new core, carrying the level and core of the newly created
fragment. The action AfterMerge(p, q) adds such a NOTIFY message to the other
link of the new core. A ComputeMin(f) action cannot occur until the source of
minlink(f) has the correct nievel, and the target of minlink(f) has an nlevel at least
as big as the source's. The preconditions for Absorb(f, g) now include the fact that
the level of fragment g must be less than the nievel of the target of minlink(g).

When an Absorb(f, g) occurs, a NOTIFY message is sent to the old fragment g, over
the reverse link of minlink(g), with the nievel and nfrag of the target of minlink(g).

Define automaton NOT (for "Notify") as follows.

The state consists of a set fragm-cnt,. Each element f of the set is called a

fragmncnt, and has the following components:
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" subtree(f), a subgraph of G;

" minlink(f), a link of G or nil; and

" rootchanged(f), a Boolean.

For each node p, there are associated two variables:

" nlevel(p), a nonnegative integer; and

" nfrag(p), an edge of G or nil.

For each link (p, q), there are associated three variables:

* nqueuep((p, q)), a FIFO queue of messages from p to q waiting at p to be sent;

* nqueuepq((p, q)), a FIFO queue of messages from p to q that are in the com-

munication channel; and

* nqueueq((p, q)), a FIFO queue of messages from p to q waiting at q to be

processed.

The set of possible messages M is {NOTIFY(l,c) : 1 >_ 0,c E E(G)}. The state

also contains Boolean variables, answered(l), one for each I E L(G), and Boolean

variable awake.

In the start state of NOT, fragments has one element for each node in V(G); for

fragment f corresponding to node p, subtree(f) = {p}, minlink(f) is the minimum-

weight link adjacent to p, and rootchanged(f) is false. For each node p, nlevel(p) = 0

and nfrag(p) = nil. The message queues are empty. Each answered(l) is false and

awake is false.

We say that a message m is in subtree(f) if m is in some nqueue((q,p)) and

p E nodes(f). A NOTIFY message is headed toward p if it is in nqueue((q,r)) and
p E subtree(r). The following are derived variables:

* For link (p, q), nqueue((p, q)) is defined to be nqueueq((p, q)) 1l nqueuepq((p, q))

I1 nqueuep((p,q)).

* For fragment f, level(f) = max{l : nlevel(p) 1 for p E nodes(f), or a.

NOTIFY(1, C) message is in subtree(f) for some c}.
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eFor fragment f, coreff) = nfrag(p) if nlevel(p) = level(f ) for some p E nodes(f),

and core(f) = c, if a NOTIFY (leVel~ff), C) message is in subtree(f).2

As for the DC action ReceiveFind, ReceiveNotify((q, p), 1, c) is only enabled if

AfterMerge(p, q) is not enabled, in order to make sure that q's side of the subtree

is notified of the new information.

Input actions:

*Start(p), p C V(G)
Effects:

awake := true

Output actions:

* InTree((p,q)), (p,q) G L(G)
Preconditions:

awake =true

(p, q) E .subtree(fragmerit(p)) or (p, q) =mivnlink(fragment(p))

answered((p, q)) =false

Effects:

answered((p, q)) :=true

9 Notln Tree((p, q)), (p, q) E L(G)
Preconditions:

fragment(p) = fragment(q) and (p, q) V subtrec(fragment(p))

answered((p, q)) =false

Effects:

answered((p,q)) :=true

Internal actions:

" ChoannelSend((p, q),mr), (p, q) E L(G), m.E Ml
Preconditions:

7n at head of 'nqueuep((, q))
Effects:

deciueue(nquieue'((p, q)))
CIIiiquee(ml. nqvueePq( (p, q) ))

" CliavneiRuru( (p, q), in), (p. q) E L(GC), mi M N
Precodit,01p.
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rn at head of nqmeuepq,((p, q))

Effects:

eliqueue(nt, nque'ue,( (p, q)))

" RcceiveNotify((q, p),1, c), (q, p) (E L(G), I > 0, c E E(G)
Preconditions:

NOTIFY(l, c) at head of nqueue,( (q, p))

AfterMerge(p, q) not enabled

Effects:

dequo-ue( nqueuc2 ,( (q, p)))

nlevel4P) :~I
nfraq(p) :~c

--let S (p, r) : (p, r) E subtree(fragment(p)), 7 j4 q)

enqueue(NO'r'rv)'(1, c), rtqueuep(k)) for all k E. S

" ComputeMin(f), f E fragments

Preconditions:

mzinlink(f) = nil

(p, q) is the iiiniu a- weight external link of f
7deVel(p) - leVPl(f)

level(f) < rilevcl(q)

Effects:

minlz'nk(f) := I

" ChangeRoot(f), f E fragments

Preconditions:

awake' = true

rootclhangud(f) =-falseK

mninlink(f) # ni

Effects:

rootcltangc(i(f) := true

* Mcrqe( f,y!), f,g CiE frag?i('mt;

Pre U)!id iti ( 1 s:

rootC/Itfl.Ugd(f) ::-- )otcli~atyrqd((/) tru

Effects:

add a niew v emiit b to fraqrnulIs
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subtree(h) subtree(f) U subtree(g) U minedge(f)

miniink(h) nil

rootchanged(h) := false

- let (p,q) ==minedge(f)

enqueue(NOTIFY(nlevel(p) + 1, (p, q)), nqueuep((p, q)))
delete f and g from fragments

* AfterMerge(p, q), p, q E V(G)
Preconditions:

(p, q) =core(fragment(p))

NOTIFY (nlevel(p) + 1, (p, q)) message in nqueue((q, p))
no NOTIFY (nlevel (p) + 1, (p, q)) message in nqueue((p, q))
nlevel(q) :A nlevel(p) + 1

Effects:

enqueue(NOTIFY( nlevel(p) + 1, (p, q)), nqueuep( (p, q)))

" Absorb(f,g), f,g E fragments

Preconditions:

rootchanged(g) = true

- let (q, p) ==minlink(g) 7.
level(g) < nlevel(p)

fragment(p) = f
Effects:

.;1

sub tree(f) := sub tree(f) U subtree(g) U minedge(g)
enqueue(NOTIFY(nlevel(p), nfrag(p)), nqueuep( (p, q))
delete g fromi fragments

Define the following predicates on states of NOT. (All free variables are uni-
versally quantified.)

" NOT-A: core(f) is well-defined. (I.e., the set of all c such that a NOTIFY(lev-
el(f). c) is in sub tree(f) or some p C nodes(f) has ndevel(p) level(f) and
nfrag(p) =c, has exactly one elemnent.)

" NOT-B: If q G subtree(p), then nlevel(q) :5 nlevel(p).

* NOT-C4 : If (p, q) =coreff). then nlevel(p) .> level(f) - 1.. V'

" NOT-D: If minlink(f) =:(p, q), thien nlevel(p) =level(f) < nlevrl(q).

" NOT-E: If nfrag(p) = ore(fragnenl(p)), then nlevcl(p) =level(fraqment(p)). 4
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" NOT-F: Either nlevel(p) = 0 and nfrag(p) = nil, or else nlevel(p) > 0 and

nfrag(p) E subtree(fragment(p)).

" NOT-G: If nlevel(p) < level(fragment(p)), then either a NOTIFY(level (frag-

ment(p)), core(fragment(p))) message is headed toward p, or else Aft,;rMcrgc

(q,r) is enabled, where p G subtree(r).

* NOT-H: If a NOTIFY(l,c) message is in nqueue((q,p)), then

(a) nlcvel(p) < I;

(b) if (p, q) $ core(fragment(p)), then nlevel(q) > 1;

(c) if c = core(fragment(p))) then I-- lewvl(fragment(p));

(d) if NOTIFY(', c') is ahead of the NOTIFY(l, c) in nqueuc((q,p)), then ' < 1:
(e) p is a child of q, or (p, q) = core(fragment(p));

(f) if (p, q) = core(fragment(p)), then I = level(fragment(p));

(g) c E subtree(fragment(p)); and

(h) I > 0.

Let PNOT be the conjunction of NOT-A through NOT-H.

In order to show that NOT simulates COM, we define an abstraction mapping

M 5 = (S 5,A!-) from NOT to COM. Define the function S5 from states(NOT) to
states(COM) by simply ignoring the message queues, and mapping the derived vari-

ables level(f) and core(f) in the NOT state to the (non-derived) variables level(f)

and core(f) in the COM state. Define the function A 5 as follows. Let s be a state

of NOT and 7r an action of NOT enabled in s.I

" If 7r = ChannelSend(k, in), ChannelRccv(k, 7n), ReceiveNotify(k, 1, c), or After-

Mcrge(p, q), then A 5(s, 7r) is empty.

" For all other values of r, A.5 (s, 7r) = 7r.

The following predicates are true in any state of NOT satisfying (ProAJ 0S5) A

P o,/'. Recall that P .ov = (P'1 o S ) A Pc'o' 1 . If P . .(, 5 (s)) is true, then the

COM predicates are true in S (s), and the S1 predicates are true in SI (S 5 (.s)). Thus,

these predicates follow from PNOT, together with the HI and COM predicates.

" NOT-I: If p = minnode(f), then no NO'TIFY message is headed toward p.

" NOT-J: For all p, at most one NO'rIFY(l, c) message is headed toward p, for a

fixed 1.

Lemma 21: NOT simumhtos COM via M 5 , PNo'T, and PC0A1-
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Proof: By inspection, the types of NOT, COM, M 5, and PNOT are correct. By
Corollary 14, PCOM is a predicate true in every reachable state of COM.

(1) Let s be in start(NOT). Obviously PNOT is true in s and S 5 (s) is in
start(COM).

(2) Obviously, A 5 (s, 7r)jext(COM) = ir lext(NOT).

(3) Let (s',7r,s) be a step of NOT such that PCOM is true of S 5 (s') and PNOT
is true of s'. Below, we only show (3a) for those predicates that are not obviously

true in s.

i) 7r is Start(p), InTree(l), NotInTree(l), or ChangeRoot(f). A 5(s', r) =

7r. Obviously, ,$5(s')7rSs(s) is an execution fragment of COM, and PNOT is true in
S.

ii) rr is ChannelSend(1,m) or ChannelRecv(1,m). A5(s', 7r) is empty.

Obviously, S5(s') = Ss(s), and PNOT is true in s.

iii) 7r is ReceiveNotify((q,p),l,c). Let f = fragment(p).

(3b) As(S', r) is empty. To show that S5(s) = S5(s'), we only need to show
that level(f) and core(f) don't change. By NOT-H(a), nlevel(p) < I in s', and thus
nlevel(p) # level(f). So changing nlevel(p) is OK. Also, since nlevekp) and nfrag(p)
are set to I and c, removing the NOTIFY(,c) from nqueue((q,p)) is OK.

(3a) NOT-A: By code.

NOT-B: By NOT-B, nlevel(q) < nlevel(r) for all r such that q E subtree(r) in
sBy NOT-H(b), if (p, q) 5 core(f), then nlevel(q) > 1 in s'. Since nlevel(p) = I in
s, the predicate is true.

NOT-C: Since this predicate is true in s' and fact that nlevel(p) increases.

NOT-D: As argued in (3b), nlevel(p) < 1 < level(f). By NOT-D, p #4
minnode(f) in s', or in s. Suppose p = targetr(minlink(g)) in s', for some g. Since
nlevel(p) increases in going from s' to s, the predicate is still true in s.

NOT-E: By NOT-H(c), c = core(f) implies that I = level(f) in s'. So iii s,
c = nfrag(p) = core(f) implies that I nlevel(p) = level(f).

NOT-F: By NOT-H(g), c : nil, and by NOT-H(h), I > 0 in s'. Thus in s,
c = nfrag(p) j nil and I = nlevei(p) # 0.
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NOT-G: The NOT cY(lc) message removed from nqucuc((q, p)) is replaced by

the NOTIFY(l, C) messages added to nqueue((p, r)), for all (p, r) E S.

NOT-H: Suppose NOTIFY(l,c) is added to nqueue(p,r) in s. (I.e., (p,r) E S.)

Claims about s':

1. NOTIFY(l, C) is at head of nqueue((q, p)), by precondition.

2. p E subtree(q) or (p, q) = core(f), by Claim 1 and NOT-H(e).
3. r E subtree(p), by Claim 2 and definition of S.
4. nlevel(r) < nlevel(p), by Claim 3 and NOT-B.

5. nlevel(p) < 1, by Claim 1 and NOT-H(a).
6. If NOTIFY(/', c') is in nqueue((p. )). then 1' < 1, by Claims 3 and 5 and NOT-H(b). U
7. nlevel(r) < 1, by Claims 4 and 5.

(a) by Claim 7. (b) by Claim 3. (d) by Claim 7. (e) by Claim 3. (f) vacuously r
true by Claim 3. (c), (g) and (h) since the same is true for the NOTIFY(l,c) in

nqueue((q,p)) in s'.

iv) r is ComputeMin(f).

(3c) A 5 (s', 7r) = 7r. Obviously 7r is enabled in Ss(s'), since by definition
nlevel(q) 5 level(fragment(q)). The effects are obviously mirrored in S 5 (s).

(3a) By the preconditions, NOT-D is true in s. No other predicate is affected.

v) 7, is Merge(fg).

(3c) A.5(s', 7r) = 7r. Obviously 7r is enabled in S 5 (s'). To show that its effects are
mirrored in S 5(s), we show that level(h) and core(h) are correct. Let minlink(f) =

(p, q) and I = level(f) in s'.

Claims about s':

1. minedge(f) = minedge(g), by precondition.

2. level(g) = 1, by Claim 1 and COM-A.
3. rootchanged(f) = true. by precondition.

4. minlink(f) - nil, by Claim 3 and COM-B.

5. nlevel(p) = 1, by Claim 4 and NOT-D.

6. nlevel(r) < I for all r E nodes(f), by definition of level(f).
7. If NOTIFY(m., C) is in subtree(f), then m < 1, by definition of level(f).

8. rootchanged(g) = true, by precondition.
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9. minlink(g) $ nil, by Claim 8 and COM-B.

10. nlevel(q) = 1, by Claims 2 and 9 and NOT-D.

11. nlevel(r) < I for all r E nodes(g), by definition of level(g).

12. If NOTIFY(m, C) is in subtrce(g), then 7n < 1, by definition of level(g).

13. (p, q) is an external link of f, by COM-A.

14. nqueue((p,q)) and nqueue((q,p)) are empty, by Claim 13 and NOT-H(e).

Claims about s:

15. nlevel(r) < I + 1, for all r E nodes(h), by Claims 6 and 11 and code.

16. The only NOTIFY message in subtree(h) with level greater than I is the NOTIFY(1+

1, (p,q)) message added to nqueue((p, q)), by Claims 7, 12 and 14 and code.

17. level(h) = 1 + 1, by Cl;ms 15 and 16.

18. core(h) = (p, q), by Claims 15 and 16.

Claims 17 and 18 give the result.

(3a) Only fragment h needs to be checked.

NOT-A: By Claims 15 and 16.

NOT-B: As argued in the proof of NOT-I, nlevel(r) = I for all r on the path
from core(f) to p, and all r on the path from core(g) to q. Since these are the only

nodes affected by the change of core, the predicate is still true in s.

NOT-C: By Claims 5, 10 and 17.

NOT-D: vacuously true since minlink(h) = nil by code.

NOT-E: By NOT-F and Claim 13, nfrag(r) 0 (p,q) for all r in nodes(f) or

nodes(g). So the predicate is vacuously true.

NOT-F: No relevant change. o.

NOT-G: If r is in nodes(g) in s', the predicate is true in s because of Claims 17

and 18 and the NOTIFY(1 + I, (p,q)) added to nqueue((p, q)) in s. If r is in nodes(f)

in sI, then AfterMerge(q,p) is enabled in s, by code and Claims 5, 10, 14 and 18.

NOT-H for the NOTIFY(/+1, (p, q)) added to nqueue( (p, q)): (a) nlevel(q) < 1+1,
by Claim 15. (b) By Claim 18. (c) By Claim 17. Cd) Vacuously true by Claim 14.
() By C~aim 18. (t) By Claims 17 and 18. (g) By code. (h) By COM-F, I > 0, so

1+ 1>0.
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NOT-H for any NOTIFY(l', C') message in subtree(f) in s' (similar argument for
g): (a), (d), (g) and (h) No relevant change.

(b) Suppose the message is in a link of core(f) = (r,t). Suppose p E subtree(t). S

By NOT-I, the message is not in nqueue((r,t)). As argued in the proof of NOT-I.
nlevel(t) = 1. If the message is in nqueue((t,r)), then, since ' < 1, the predicate is

true in s.

(c) By Claim 13 and NOT-H(g), c' 5 (p, q), so the predicate is vacuously truc

in s.

(e) The ,only nodes for which the subtree relationship changes are those along

the path from core(f) to p. By NOT-I, there is no NOTIFY message in this path.

(f) Vacuously true, by Claim 18.

vi) 7r is AfterMerge(p,q). Let f = fragment(p).

(3b) A5(s') is empty. Obviously S (s') = S5(s).

(3a) Let I = nlevel(p) + 1 and c = (p,q).

NOT-A: Obvious. S

NOT-B, C, D, and E: No relevant changes.

NOT-G: The NOTIFY(l,c) message added to nqueue((p,q)) in s compensates

for the fact that AfterMerge(p, q) goes from enabled in s' to disabled in s.

NOT-H: Let c = (p, q) and I = nlevel(p) + 1. Consider the NOTIFY(l, c) added
to nqueue((p, q)).

1. (p, q) = core(f), by precondition.

2. NOTIFY(1, C) is in nqueue((q,p)), by precondition.
3. No NOTIFY(l, C) is in nqueue((p, q)), by precondition.

4. nlevel(q) j 1, by precondition.

5. 1 = level(f), by Claims 1 and 2 and NOT-H(f).

6. nlevel(q) < 1, by Claims 4 and 5.

7. If NOTIFY(l', c') is in nquteue((p, q)), then ' = 1, by Claims 1 and 5 and NOT-H(d).
8. If NOTIFY(', C') is in h( l -1  a NTA, d:,,/), h c' ,5 Gli, an~d NOT-A.

9. No NOTIFY is in nqueue( (p, q)), by Claims 3, 7 and 8. b
10. nlevel(p) > 0, by NOT-F.
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(a) by Claim 6. (b) vacuously true, by Claim 1. (c) by Claim 5. (d) by Claim
9. (e) by Clairm 1. (f) by Claim 5. (g) by Claim 1 and COM-F. (h) by Claim 10.

vii) ?r is Absorb(fg).

(3c) A(s' = 7r) =r.

Claims about s':

1. rootchanged(g) = true, by precondition.

2. level(g) < nlevel(p), by precondition.

3. fragment(p) = f, by precondition.

4. nlevel(p) < level(f), by Claim 3 and definition of level.

5. nlevel(r) < level(g), for all r E nodes(g), by definition of level.

6. If NOTIFY(l, c) is in subtree(g), then I < level(g), by definition of level.

7. (q. p) is an external link of g, by COM-A.
8. nqueue((p,q)) and nqueue((q,p)) are empty, by Claim 7 and NOT-H(e).

Bv Claim 4, 7r is enabled in S 5(s'). The effects of 7r are mirrored in S 5 (s)
if core(f) and level(f) are unchanged; by code and Claims 6, 7 and 8, they are

unchanged.

(3a) Let I = nlevel(p) and c = nfrag(p) in s'.

More claims about s':

9. f 5 g, by Claims 7 and 3.

10. level(f) > 0, by Claims 2 and 3 and COM-F.

11. core(f) E subtree(f), by Claim 10 and COM-F.
12. nfrag(r) : core(f), for all ' E nodes(g), by Claim 11 and NOT-F. V

13. nlevel(q) < level(g), by definition.

14. nfrag(p) E subtree(f), by Claims 2 and 10 and NOT-F.

NOT-A: by code and Claims 6, 7 and 8.

NOT-B: Same argument as for Merge(f,g).

NOT-D: No rplevant chalnges.

NOT-E: By Claim 12, vacuously true for nodes formerly in nodes(g).

NOT-F: No relevant changes.
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NOT-G: Suppose nlevel(p) = level(f) in s'. By code, in s there is a

NOTIFY(level(f), c) message headed toward every node formerly in nodes(g).

Suppose nlevel(p) # level(f) in s'. By NOT-G, either a NOTIFY(level(f),,')

message is headed toward p in s', and thus is headed toward all nodes formerly ill

nodes(g) in s, or AfterMerge(r,t) is enabled in s' with p E subtree(t), and thus in s,

AfterMerge(r, t) is still enabled and every node formerly in nodes(g) is in subtree(t).

NOT-H for the NOTIFY(, c) added to nqueue((p, q)): (a) by Claims 2 and 12.

(b) by code. (c) by NOT-E. (d) vacuously true by Claim 8. (e) q is a child of p, by

Claim 11. (f) vacuously true, by Claim 11. (g) by Claim 14. (h) by Claims 2 and

10.

NOT-H for any NOTIFY(',c') in subtree(g) in s': (a), (d), (g) and (h): no

relevant change. (b) and (e) same argument as for Merge(f, g). (c) vacuously true,
by Claim 11. (f) vacuously true, by code. 0

Let PNOT = (PcoM o S5) A PNOT.

Corollary 22: PNOT is true in every reachable state of NOT.

Proof: By Lemmas 1 and 21. 0
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4.2.6 CON Simulates OM

This automaton concentrates on what happens after minlink(f) is identified,

until fragment f merges or is absorbed, i.e., the ChangeRoot(f, g), Merge(f, g) and

Absorb(g, f) actions are broken down into a series of actions, involving message-

passsing. The variable rootchanged(f) is now derived. As soon as ComputeMin(f)

occurs, the node adjacent to the core closest to minlink(f) sends a CHANGEROOT

message on its outgoing link that leads to minlink(f). A chain of such messages

makes its way to the source of minlink(f), which then sends a CONNECT(level(f))

message over minlink(f). The presence of a CONNECT message in minlink(f) means

that rootchanged(f) is true. Thus, the ChangeRoot(f) action is only needed for

fragments f consisting of a single node. Two fragments can merge when they have

the same minedge and a CONNECT message is in both its links; the result is that one of

the CONNECT messages is removed. The action AfterMerge(p, q) removes the other

CONNECT message from the new core. (A delicate point is that ComputeMin(f)

cannot occur until the appropriate AfterMerge(p, q) has, in order to make sure old

CONNECT messages are not hanging around.) Absorb(f,g) can occur if there is a

CONNECT(1) message in minlink(g), and minlink(g) points to a fragment whose level

is greater than 1.

Define automaton CON (for "Connect") as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:

* subtree(f), a subgraph of G;

9 core(f), an edge of G or nil;

9 level(f), a nonnegative integer; and

* minlink(f), a link of G or nil.

For each link (p, q), there are associated three variables:

" cqueuep((p, q)), a FIFO queue of messages from p to q waiting at p to be scnt;

* cqueuepq((p, q)), a FIFO queue of messages from p to q that are in the commu-

nication channel; and

" cqucueq( (p, q)), a FIFO queue of messages from p to q waiting at q to be

processed.
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The set of possible messages Al is {CONNECT(l) : 1 > 0} U {c(iIANGEIOO'I}. The

state albo contains Boolean variables, answered(l), one for each 1 E L(G), and

Boolean variable awake.

In the start state of COM, fragnents has one element for ,ach node in V( G): for

fragment f corresponding to node , subtree(f) = {p}, core(f) = nil, level(f) = 0,

and minlink(f) is the minimum-weight link adjacent to p. The message queues arc

empty. Each answered(l) is false mid awake is false.

The derived variable cqueuc((p,q)) is cqucueq( (p,q)) I cqueueq( (p,q)) 1 c-.

queuep( (p, q)). For each fragmlent f, we define the derived Boolean varial)le

rootchanged(f) to be true if and only if a CONNECT message is in cquet~e( (p. q)),

for some external link (p,q) of f. Derived variable tominlink(p) is defined to be O

the link (p,q) such that (p,q) is on the path in subtrec(fragment(p)) from 1) to

minnode(fragment(p)).

Message m is defined to be in qubtree(f) if in is in cqueue((q,p)) and p C

nodes(f).

Input actions:

9 Start(p), p E V(G)

Effects:

awake := true

Output actions:

* InTree((p,q)), (p,q) E L(G) N

Preconditions:

awake = true

(p, q) E subtrue(fragmcnt(p)) ()r (p, q) minlink(fragmenm(p))

answcred( (p, q)) false

Effects:

an.qwcred( (p, q)) :- true

* NotlnTree((p,q)), (p,q) G L(G)

Preconditions:

fragmnent(p) = fragineni(q) and (1), q) - subtrec(fragmxn t(p))

answered( (p. q) ) false

Effects:

an ere((p. q) :z true
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Internal actions:

9 Chne~n(p ) ) (p, q) EL(G), m E Ml

Preconditions:

m at head of cquteuep((p, q))

Effects:

dequeue( cqueue,( (p, q)))

enqueue(m, cqueuep,((p, q)))

e ChannelRecv((p, q), m), (p, q) E£() ?fl EM

Preconditions:

mnat head of cqueuepq((p, q))

Effects:

dequeue(cqueuepq(Q', q)))

enqueue(m, cqueueq((p, q)))

e ComputieMin(f), f E fragments

Preconditions:

minlink(f) = nil

I is the minimum-weight external link of subtree(f)S

level(f) 5 level(fragmenit(target(l)))

no CONNECT message is in cqueite(k), for any internal link k of f
Effects:

minlink(f) := I

-let p = root(f)

if p # minnode(f) then enqueue(CHANGEROOT,CqUeuep(tOmi'nlink(p)))

else enqueue(CONNECT( le'Vei(f)), cqueuep( minlink(f)))

* Receive ChangeRoot((q, p)), (q,p) E L(G)
Preconitions

Prconditios: ea fcqee((~

EfctsG: O t edo quup(~)

Efects: cuue(qp)

deueet( fqucue( p))

i et f: mindef f taen eqi-i(('INGROp)IC~~oinikp

else enqueue( CONNECT( level(f )), cqueuep(minlink(f)))

* ChangeRootff), f E fragments

Preconditions:

aw~ake = true
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rootchanged(f) = false

subtree(f) = {p}
Effects:

enqueue(CONNECT(O), cqueue ( minlink( f)))

* Merge(f, g), f, g E fragments

Preconditions:

CONNECT(l) in cqueue((p, q)), (p, q) external link of f

CONNECT(l) at head of cqueuep((q, p)), (q,p) external link of g

Effects:

dequeue(cqueuep((q, p)))

add a new element h to fragments

subtree(h) := subtree(f) U subtree(g) U minedge(f)

core(h) := minedge(f)

level(h) := level(f) + 1

minlink(h) := nil

delete f and g from fragments

* AfterMerge(p,q), p, q E V(G)

Preconditions:
fragment(p) = fragment(q)

CONNECT(l) at head of cqueuep((q,p))

Effects:

dequeue(cqueuep((q, p)))

* Absorb(f,g), f,g E fragments

Preconditions:

- let p = target(minlink(g)) "

CONNECT(l) at head of cqueuep(minlink(g))

I < level(f)

f = fragment(p)

Effects:

dequeue(cqueuep( minlink(g)))

subtree(f) := .Rubtree(f) U subtree(g) U minedge(g)

delete g from fragments

Define the following predicates on states of CON. (All free variables are uni-

versally quantified.)

* CON-A: If awake = false, then cquett,((qp)) is empty.
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" CON-B: If rootchanged(f) = false and minlink(f) 5 nil, then either subtree(f)

= {p}, or else minnode(f) : root(f) and there is exactly one CHANGEROOT

message in subtree(f).

" CON-C: If a CHANGEROOT message is in cqueue( (q,p)), then minlink(f) # nil,

rootchanged(f) = false, p is a chilci of q, and minnode(f) G subtree(p), where

f = fragment(p).

" CON-D: If a CONNECT(l) message is in cqucue(k), where k is an external link

of f, then k = minlink(f), 1 = level(f), and only one CONNECT message is in

cqueue(k).

" CON-E: If a CONNECT(l) message is in ;queue((p, q)), where (p, q) is an internal

link of J. then (p. q) = core(f), 1 < level(f), and only one CONNECT message is

in cquec((p, q)).

" CON-F: If minlink(f) # nil, then no CONNECT message is in cqueuc(k), for any

internal link k of f. ANN%

Let PCON be the conjunction of CON-A through CON-F.

In order to show that CON simulates COM, we define an abstraction mapping

M 6 = (S 6 1 A 6 ) from CON to COM1.

Define the function S6 from states(CON) to states(COM) by simply ignoring

the message queues, and mapping the derived variables rootchanged(f) in the CON

state to the (non-derived) variables rootchanged(f) in the COM state.

Define the function .A6 as follows. Letr s be a state of CON and 7r an ac-

tion of CON enabled in s. If the minimum-weight external link of f is ;"dj,1cent e
to core(f), then ComputeMin(f) causes CormputeMin(f), immediately followed by

ChangeRoot(f), to be simulated in COA1. Otherwise, ChangeRoot(f) is simulated

when the source of minlink(f) receives a CHANGEROOT message. X,

* If 7r = ChannelSend((p, q), m), ChannelRccv((p,q), m), or AfterMerge(p,q),

then A 6(S, 7r) is empty.

" If 7r = ComputeMin(f) and rnw-root(f) = mu-rinnode(f) in s, then A 6 (s. 7r)

ComputeMin(f) t ChangeRoot(f), where t is identical to S 6 (S) except that .

minlink(f) equals the minimum- weight external link of f in t.

105



Section 4.2.6: CON Simulates COM

" If 7r = ComputeMin(f) and mw-root(f) J m)-minnodc(f) in s, then A4(,, 7)

= ComputeMin(f).

" If 7r = ReceiveChangeRoot((q,p)) and p = minnode(fragmcnt(p)) in s, then .I I

A6(,S, 7r) = ChangeRoot(fragment(p)).

" If ir = ReceiveChangeRoot((q,p\; and p $ minnode(fragment(p)) in s, then

A 6 (s, 7r) is empty.

" For all other values of 7r, A 6 (S, 7r) = 7r.

Recall that PCOM = (PHI o S 1 ) A PCOM. If P OM(,S6(s)) is true, then the

COM predicates are true in S6 (s), and the HI predicates are true in SI(S 6 (s)).

Lemma 23: CON simulates COM via M 6 , PCON, and PCOM.,

Proof. By inspection, the types of CON, COM, MA6 , and PCON are correct. By

Corollary 14, P&OM is a predicate true in every reachable state of COM.

(1) Let s be in start(CON). Obviously PCON is true in s and S 6 (s) is in

start(COM).

(2) Obviously, A 6 (S, 7r)eXt(COM',) = 7rext(CON).

(3) Let (s', 7r, s) be a step of CON sucb that P'OAI is true of S6(s') and PCON

is true of s'. Below we show (3a) only for those predicates that are not obviously

true in s.

i) 7r is Start(p), InTree(I) or NotlnTree(l). A 6 (s', 7r) = 7r. Obviously,

S 6 (s')7rS 6 (s) is an execution fragment of COM, and PCON is true in s.

ii) 7t is ChannelSend((q,p),m) or ChannelRecv((q,p),m). A 6(s',ir) is

empty. Obviously, S 6 (s') = S 6(s), and PC'ON is true in s.

iii) 7" is ComputeMin(f).

Case 1: rw-root(f) # mw-minnode(f) in s'. • p

(3b) A,(.s'. -7) = 7r. Obviously S(j(s')7rS 6 (s) is an execution fragment of COAL1.

(3a) Claims about s':

1. minlink(f) = nil, by precondition.
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2. 1 is the minimum-weight external link of f, by precondition.

3. level(f) < level(fragment(target(l))), by precondition.

4. No CONNECT message is in cqueue(k), for any internal link k of f, by precondition.

5. p = mw-root(f), by assumption.

6. p # mw-minnode(f), by assumption.

7. awake = true, by Claim 1 and COM-C.

8. No CHANGEROOT mesage is in subtree(f), by Claim 1 and CON-C.

9. mw-minnode(f) E subtree(p), by Claim 5.

10. rootchavqed(f) = false. by Claim 1 and COM-B.

Claim,, about s:

11. minlink(f) = 1, the minimum-weight external link of f, by Claim 2 and code.

12. level(f) < level(fragment(target(l))), by Claim 3.

13. p = root(f), by Claims 5 and 11.

14. p # minnode(f), by Claims 6 and 11.

15. awake = true. by Claim 7.

16. Exactly one CHANGEROOT message is in subtree(f), by Claim 8 and code.

17. m.innode(f) E subtree(p), by Claims 9 and 11.

18. rootchanged(f) = false, by Claim 10.

19. No CONNECT message is in cqueue(k), for any internal link k of f, by Claim 4.

CON-A is true by Claim 15. CON-B is true by Claims 13, 14, and 16. CON-C

is true by definition of tominlink, Claims 17, 18 and 11. CON-D and CON-E are

true since no relevant changes are made. CON-F is true by Claim 19.

Case 2: rmw-root(f) = mw-minnode(f) in s'.

(3b) A 6 (s',7r) = 7r t ChangeRoot(f). where t is identical to S6(s') except that

minlink(f) equals the minimum-weight external link of f in t.

Claims about s'.:

1. minlink(f) = nil, by precondition.

2. 1 is the minimum-weight external link of .f, by precondition.

3. lcncl(f) < level(fragment (target(1))), by precondition.

4. awake = true, by Claim 1 and COM-C.

.5. r,,otchan(d(f) = false, by Claim 1 and COM-B.
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Claims about t:

6. minlink(f) is the minimum-weight external link of f, by definition of t.
7. awake = true, by Claim 4.

8. rootchanged(f) = false, by Claim 5.

Claims about s:

9. minlink(f) is the minimum-weight external link of f, by code.

10. A CONNECT message is in cqueue(minhink(f)), by code.

11. rootchanged(f) = true, by Claims 9 and 10.

By Claims 1, 2 and 3, r is enabled in S(.s'). By Claim 6 (and definition of t),
the effects of ir are mirrored in t. By Claims 6, 7, and 8, ChangcRoot(f) is enabled

in t. By Claim 11 (and definition of t), the effects of ChangeRoot(f) are mirrored in

S6(s). Therefore, S6(s')7r t ChangeRoot(f),(s) is an execution fragment of COM11.

(3a) More claims about s':

12. No CHANGEROOT message is in subtree('), by Claim 1 and CON-C.

13. No CONNECT message is in any cqueue(k), where k is an external link of f, by

Claim 1 and CON-D.
14. No CONNECT message is in any cqueue(k), where k is an internal link of f, by

precondition.

More claims about s:

15. awake = true, by Claim 4.

16. No CHANGEROOT message is in subtree(f), by Claim 12.

CON-A is true by Claim 15. CON-B is true by Claim 11. CON-C is true by

Claim 16. CON-D is true by Claims 9, 10, and 13 and code. CON-E is true because

no relevant changes are made. CON-F is true by Claim 14. S

iv) ir is RecciveChangeRoot((q,p)). Let f = fragment(p).

Case 1: p 7 minnode(f) in s'.

(3c) A 6 (s', 7r) is empty. Below we show that rootchanged(f) is the same in ,
and s, which implies that S6 (s) =$(s').

Claims about s':

1. A CHANGEROOT message is in cqueue((q, p)), by precondition.
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2 . (p, q) C subtree(f), by Claim 1 and CON-C.

3. rootchanged(f) = false, by Claims 1 and 2 and CON-A.

Claims about s:

4. rootchanged(f) = false, by Claim 1 and code.

Claims 2 and 4 give the result.

(3a) Let (p, r) = tominlink(p).

More claims about s':

5. awake = true, by Claim 1 and CON-A.

6. minlink(f) 7 nil, by Claims 1 and 2 and CON-C.
7. minnode(f) C subtree(p), by Claims 1 and 2 and CON-C.

8. There is exactly one CHANGEROOT message in subtree(f), by Claims 2, 3 and 6

and CON-B.
9. r is a child of p and minnode(f) E subtree(r), by definition of tominlink(p).

More claims about s:

10. awake = true, by Claim 5.
11. There is exactly one CHANGEROOT message in subtree(f), by Claim 8 and code.

12. r is a child of p, by Claim 9.

13. minlink(f) nil, by Claim 6.

14. (p,r) # co'e(F), by Claim 9.

15. minnode(f) E subtree(r), by Claims 7 and 9.

CON-A is true by Claim 10. CON-B is true by Claim 11 and assumption for

Case 1. CON-C is true by Claims 4, 12, 13, 14 and 15. CON-D, CON-E and CON-F

are true because no relevant changes are made.

Case 2: p = minnode(f) in s'.

(3b) A 6(s', 7r) = ChangeRoot(f).

Claims about s' :

1. A CHANGEROOT message is in cqueuc((q,p)), by precondition.
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2. p = minnode(f), by assumption.

3. awake = true, by Claim 1 and CON-A.

4. minlink(f) J nil, by Claim 1 and CON-C.

5. rootchanged(f) = false, by Claim 1 and CON-C.

6. minlink(f) is an external link of f, by Claim 4 and COM-A.

By Claims 3, 4 and 5, ChangeRoot(f) is enabled in S 6(s').

Claims about s:

7. A CONNECT message is in cqueue(minlink(f)), by code.

8. minlink(f) is an external link of f, by Claim 6.

9. rootchanged(f) = true, by Claims 7 and 8.

By Claim 9, the effects of ChangeRoot(f) are mirrored in S6 (s).

So S 6(s') ChangeRoot(f) S 6 (s) is an execution fragment of COMI.

(3a) More claims about s':

10. p is a child of q, by Claim 1 and CON-C.

11. Exactly one CHANGEROOT message is in subtree(f), by Claims 5, 4, 10 and

CON-B.

12. No CONNECT message is in any cqueue(k), where k is an external link of f, by

Claim 5.
13. No CONNECT message is in any cqueue(k), where k is an internal link of f, by

Claim 4 and CON-F.

More claims about s:

14. awake = true, by Claim 3.

15. No CHANGEROOT message is in subtree(f); by Claims 1, 10 and 11 and code.

16. No CONNECT message is in any cqueue(k), where k is an internal link of f, by

Claim 13.

CON-A is true by Claim 14. CON-B is true by Claim 9. CON-C is true by

Claim 15. CON-D is true by Claims 7, 8, 12 and code. CON-E is true because no

relevant changes are made. CON-F is true by Claim 16.

v) ?r is ChangeRoot(f).
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(3b) A 6(S', 70 = 7r

Claims about s':

1. awake = true, by precondition.

2. rootchanged(f) = false, by precondition.

3. subtree(f) = {p}, by precondition.

4. minlink(f) 5 nil, by Claim 3 and COM-E.

5. minlink(f) is an external link of f, by Claim 4 and COM-A.

Claims 1, 2 and 4 imply that 7r is enabled in S 6 (s').
S

Claims about s:

6. minlink(f) is an external link of f, by Claim 5.

7. A CONNECT message is in cqueue(minlink(f)), by code.

8. rootchanged(f) = true, by Claims 6 and 7.

Claim 8 implies that the effects of 7r are mirrored in S 6 (s).

So S 6 (s')7rS6(s) is an execution fragment of COM.

(3a) More claims about s':

9. No CHANGEROOT message is in cqueuc((q,p)), for any q, by Claim 3 and CON-C.

10. No CONNECT message is in any cqueue(k), where k is an external link of f, by

Claim 2.
11. No CONNECT message is in any cqueue(k), where k is an internal link of f, by

Claim 3. S
More claims about s:

12. awake = true, by Claim 1 and code.

13. No CHANGEROOT message is in cqueue((q,p)), for any q, by Claim 9.

14. No CONNECT message is in any cqueue(n), where n is an internal link of f, by

Claim 11. v

CON-A is true by Claim 12. CON-B is true by Claim 8. CON-C is true by "6

Claim 13. CON-D is true by Claims 6, 7 and 10 and code. CON-E is true because

n1o relevant. changes axe ad(I. CON-F is true, by Claims 6 and 14.

vi) 7r is Merge(fg).
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(3b) As(s', 7r) = 7r.

Claims about s':

1. A CONNECT(l) message is in cqueue((p,q)), by precondition.
2. (p, q) is an external link of f, by precondition.

3. A CONNECT(l) message is in cqueue((q,p)), by precondition.
4. (q, p) is an external link of g, by precondition.

5. f : g, by Claims 2 and 4.

6. rootchanged(f) = true, by Claims 1 and 2.

7. rootchanged(g) = true, by Claims 3 and 4.

8. (p, q) = minlink(f), by Claims 1 and 2 and CON-D.

9. (q,p) = minlink(g), by Claims 3 and 4 and CON-D.

10. minedge(f) = minedge(g), by Claims 8 and 9.

11. If k $ minlink(f) is an external link , f f, then no CONNECT message is in

cqueue(k), by CON-D.

12. If k # minlink(g) is an external link of g, then no CONNECT message is in

cqueue(k), by CON-D.

By Claims 5, 6, 7 and 10, 7r is enabled in S 6 (s'). By Claims 11 and 12 and

definition of h, rootchanged(h) = false in s, so the effects of 7r are mirrored in S6(s).

Thus, S 6 (s')7rS6 (s) is an execution fragment of COM.

(3a) More claims about s':

13. awake = true, by Claim 1 and COM-A.

14. No CHANGEROOT message is in subtree(f), by Claim 6 and CON-C.
15. No CHANGEROOT message is iii subtree(g), by Claim 7 and CON-C.

16. No CONNECT message is in cqueue(k), for any internal link k of f, by Claim 8

and CON-F.
17. No CONNECT message is in cqueue(k), for any internal link k of g, by Claim 9

and CON-F.

18. Exactly one CONNECT message is in cqueue((p, q)), by Claims 1 and 2 and

CON-D.
19. Exactly one CONNECT message is in cqueue((q,p)), by Claims 3 and 4 and

CON-D.
20. 1 = level(f), by Claims 1 and 2 and CON-D.

Claims about s:
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21. awake = true, by Claim 13 and code.

22. minlink(h) = nil, by code.

23. No CHANGEROOT message is in subtree(h), by Claims 14 and 15 and code.

24. No CONNECT message is in cqueue(k), for any external link k of h, by Claims

11 and 12 and code.

25. Exactly one CONNECT message is in cqueue((p, q)) and (p, q) = core(h), by Claim

18 and code.

26. 1 < level(h), by Claim 20 and code.

27. No CONNECT message is in cqueue((q,p)), by Claim 19 and code.

28. No CONNECT message is in any non-core internal link of h, by Claims 16 and

17 and code.

CON-A is true by Claim 21. CON-B is true by Claim 22. CON-C is true by

Claim 23. CON-D is true by Claim 24. CON-E is true by Claims 25, 26, 27 and

28. CON-F is true by Claim 22.

vii) 7r is AfterMerge(p,q). A6 (s',ir) is empty. Obviously, S 6 (s)= S 6 (s'),

and PCON is true in s.

viii) 7r is Absorb(fg).

(3b) A 6 (s,7r) = 7r.

Claims about s':

1. (q, p) = minlink(g), by assumption.

2. A CONNECT(l) message is in cqueue(minlink(g)), by precondition.

3. 1 < level(f), by precondition.

4. f = fragment(p), by precondition.

5. minlink(g) is an external link of g, by Claim 1 and COM-A.

6. rootchanged(g) = true, by Claims 2 and 5.

7. 1 = level(g), by Claim 2 and CON-D.

8. level(g) < level(f), by Claims 7 and 3.

9. If a CONNECT message is in cqueue((p, q)), then (p,q) = minlink(f), by Claims 4

and 5 and CON-D.

10. If a CONNECT message is in cqueue((p,q)), then level(f) level(g), by Claim 9

and COM-A.
11. No CONNECT message is in cqueue((p, q)), by Claims 8 and 10.

12. No CONNECT message is in cqueue(k), for any external link k # minlink(g) of g,

lby CON-D.
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By Claims 6, 8, 4 and 1, 7r is enabled in S6(s'). By Claims 11 and 12,

rootchanged(f) remains unchanged, and the effects of 7r are mirrored in S6(S). Thus,

S 6 (s')7rS 6 (s) is an execution fragment of COM.

(3a) More claims about s':

13. awake = true, by Claim 2 and CON-A.

14. 1 > 0, by COM-F.
15. level(f) > 0, by Claims 7, 8 and 14.

16. Inodes(f)l > 1, by Claim 15 and COM-F.
17. No CHANGEROOT message is in subtree(g), by Claim 6 and CON-C.
18. No CONNECT message is in cqueue(k), where k is an internal link of g, by Claim

1 and CON-F.

Claim about s:

19. awake = true, by Claim 12 and code.

CON-A is true by Claim 19. CON-B is true since by Claims 16 and 17 no
relevant changes are made. CON-C is true since by Claim 11, 12 and 17 no relevant

changes are made. CON-D is true since by Claim 12 no relevant changes are made.

CON-E is true since by Claims 11 and 18 no relevant changes are made. CON-F is
true by Claim 18 and code. 0

Let PCON = (PCoM o 86) A PCON.

Corollary 24: PCON is true in every reachable state of CON.

Proof: By Lemmas 1 and 23. 0

4.2.7 GHS Simultaneously Simulates TAR, DC, NOT and CON

This automaton is a fully distributed version of the original algorithm of [GHS].

(We have made some slight changes, which are discussed below.) The functions of

TAR, DC, NOT and CON are united into one. All variables that are derived in

one of these automata are also derived (in the same way) in GHS. In addition,

there are the following derived variables. The variable dcstatus(p) of DC is refined

by the variable nstatus(p), and has values sleeping, find, and found; initially, it is

sleeping. The awake variable is now derived, and is true if and only if at least one
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node is not sleeping. The fragments are also derived, as follows. A subgraph of G is

defined to have node set V(G) and edge set equal to all edges of G, at least one of

whose links is classified as branch and has no CONNECT message in it. A fragment is

associated with each connected component of this graph. Also, testise(f) is defined

to be all nodes p such that either testlink(p) # nil, or a FIND message is headed

toward p (or will be soon).

The bulk of the arguing done at this stage is showing that the derived variables

(subtree, level, core, minlink, testset, rootchangcd) have the proper values in the

state mappings. In addition, a substantial argument is needed to show that the

implementation of level and core by local variables interacts correctly with the

test-accept-reject protocol. (See in particular the definition of the TAR action

mapping for ReceiveTest, and the case for ReceiveTest in Lemma 25.) It would be

ideal to do this argument in NOT, where the rest of the argument that core and

level are implemented correctly is done, but reorganizing the lattice to allow this

consolidation caused graver violations of modularity.

The messages sent in this automaton are all those sent in TAR, DC, NOT

and CON, except that NOTIFY messages are replaced by INITIATE messages, which

have a parameter that is either find or found, and FIND messages are replaced by

INITIATE messages with the parameter equal to find.

Some minor changes were made to the algorithm as presented in [GHS]. First,

our version initializes all variables to convenient values. (This change makes it

easier to state the predicates.) Second, provision is made for the output actions

InTree(l) and NotInTree(l). Third, when node p receives an INITIATE message,

variables inbranch(p), bestlink(p) and bestwt(p) are only changed if the parameter

of the INITIATE message is find. This change does not affect the performance or

correctness of the algorithm. The values of these variables will not be relevant until

p subsequently receives an INITIATE-find message, yet the receipt of this message

will cause these variables to be reset. The advantage of the change is that it greatly

simplifies the state mapping from GHS to DC.

Our version of the algorithm is slightly more general than that in [GHS]. There,

each node p has a single queue for incoming messages, whereas in our description,

p has a separate queue of incoming messages for each of its neighbors. A node p

in our algorithm could happen to process messages in the order, taken over all the

neighbors, in which they arrive (modulo the requeucing), which would be consistent

with the original algorithm. But p could also handle the messages in some other
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order (although, of course, still in order for each individual link). Thus, the set of

executions of our version is a proper superset of the set of executions of the original.

A small optimization to the original algorithm was also found. (It does not

affect the worst-case performance.) When a CONNECT message is received by p

under circumstances that cause fragment g to be absorbed into fragment f, an

INITIATE message with parameter find is only sent if testlink(p) 5 nil in our version,

instead of whenever nsiatus(p) = find as in the original. As a result of this change,

if nstatus(p) = find and testlink(p) = nil, p need not wait for the entire (former)

fragment g to find its new minimum-weight external link before p can report to

its parent, since this link can only have a larger weight than the minimum-weight

external link of p already found.

The automaton GHS is the result of composing an automaton Node(p), for all

p E V(G), and Link(l), for all I E L(G), and then hiding actions appropriately to

fit the MST(G) problem specification.

First we describe the automaton Node(p), for p E V(G). The state has the

following components:

" nstatus(p), either sleeping, find, or found;

" nfrag(p), an edge of G or nil;

" nlevel(p), a nonnegative integer;

" bestlink(p), a link of G or nil;

* bestwt(p), a weight or 00;

C.
" testlink(p), a link of G or nil; I

* inbranch(p), a link of G or nil; and

" findcount(p), a nonnegative integer.

For each link (p, q) E Lp(G), there are the following variables:

" lstatus((p, q)), either unknown, branch or rejected;

" queuep((p, q))., a FIFO queue of messages from p to q waiting at p to be sent,
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* queuep((q,p)), a FIFO queue of messages from q to p waiting at p to be pro-

cessed; and S

* answered((p,q)), a Boolean.

The set of possible messages M is {CONNECT(l) : I > 0} U {INITIATE(l,C,st)

I > 0, c E E(G), st is find or found} U {TEST(l, C) : 1 > 0, c E E(G)} U {REPORT(W):

w is a weight or oo} U {ACCEPT, REJECT, CHANGEROOT}.

In the start state of Node(p), nstatus(p) = sleeping, nfrag(p) = nil, nlevel(p) =

0, bestlink(p) is arbitrary, bestwt(p) is arbitrary, testlink(p) = nil, inbranch(p) is

arbitrary, findcount(p) = 0, lstatus(l) = unknown for all I E Lp(G), answered(l) =

false for all 1 E Lp(G), and both queues are empty.

Now we describe the actions of Node(p).

Input actions:

" Stari(p)

Effects:

if nstatus(p) = sleeping then execute procedure Wake Up(p)

" ChannelRecv(l), 1 E Lp(G), m E M
Effects:

enqueue(m, queuep(l))

Output actions:

* InTree(l), I E Lp(G)

Preconditions:

answered(l) = false 5

lstatus(l) = branch

Effects:
answered(l) := true

9 NotlnTree(l), I E Lp(G)
Preconditions:

answered(l) = false

lstatus(1) = rejected

Effects:
ansqwered(l) := true
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ChannelSend(l, m), I E Lp(G), m E M

Preconditions:

m at head of queuep(l)

Effects:

dequeue(queuep(l))

Internal actions:

" Receive Connect((q,p),l), (p,q) E Lp(G)

Preconditions:

CONNECT(l) at head of queuep((q,p))

Effects:

dequeue(queue,((q, p)) )

if nstatus(p) = sleeping then execute procedure Wake Up(p)

if I < nlevel(p) then [

lstatus((p, q)) := branch

if testlink(p) # nil, then

enqueue(IN ITI ATE(nlevel(p), nfrag(p),find), queue,( (p, q)))

findcoun(p) := findcount(p) + 1]

else enqueue(INITIATE(nlevel(p), nfrag(p),found), queue( (p, q)))]

else

if lstatus((p, q)) = unknown then enqueue(CONNECT(l), queuep((q, p)))

else enqueue(INITIATE(nlevel(p) + 1, (p, q), find), queuep((p, q)))

" ReceiveInitiate((q, p), 1, c, st), (p, q) E Lp(G)

Preconditions:

INITIATE(l, c, st) at head of queuep((q,p))

Effects:

dequeue(queue,((q, p)))

nlevel(p) := I

nfrag(p) := c

nstatus(p) := st

- let S = {(p, r) : Istatus((p,r)) = branch, r $ q} -

enqueue(INITIATE(l, c, st), queuep(k)) for all k S

if st = find then [

inbranch(p) := (p, q)

bestlink(p) := nil

bestwt(p) := 00

execute procedure Test(p)
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findcount(p) := IS[]

* Receive Test((q,p),l,c), (p,q) E Lp(G)

Preconditions:
TEST(l, c) at head of queuep((q, p))

Effects:
dequeue(queuep((q, P: ))

if nstatus(p) = sleeping then execute procedure Wake Up(p)
if I > nlevel(p) then enqueue(TEST(l, c), queuep((q,p)))

else

if c - nfrag(p) then enqueue(ACCEPT, queue,((p, q)))

else[

if lstatus((p,q)) = unknown then lstatus((p,q)) := rejected
if testlink(p) # (p, q) then enqueue( REJECT, queue((p, q)))

else execute procedure Tcst(p)

* ReceiveAccept((q,p)), (p,q) E Lp(G)
Preconditions:

ACCEPT at head of queuep((q,p))

Effects:

dequeue(queuep((q, p)))

testlink(p) := nil
if wt(p, q) < bestwt(p) then

bestlink(p) := (p,q)

besliw(p) := wt(p,q) I
execute procedure Report(p)

* ReceiveReject((q,p)), (p,q) E Lp(G)

Preconditions:
REJECT at head of queuep((q,p))

Effects:
dequeue(queuep((q, p)))

if lstatus((p, q ) = unknown then Istatus((p, q)):= rejected
execute procedure Test(p)

* ReceiveReport((q,p),w), (p,q) E Lp(G)
Preconditions:

REPORT(w) at head of queuep((q,p))

Effects:
dequeue( queue,( (q, p)))
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if (p, q) # inbranch(p) then [

findcounlkp) :=findcounit(p) - 1
if w < bestwt(p) then [

bestwt(p) := w

bestlink(p) := (p, q)

execute procedure Report(p)]

else

if nstatus(p) = find then enueue(REPORT(U queue,((q,p)))

else if w > bestwt(p) then execute procedure ChangeRoot(p)

* Receive ChangeRoot((q,p)), (p,q) E Lp(G)

Preconditions:

CHANGEROOT at head of queuep((q,p))

Effects:

dequeue(queuep((q, p)))
execute procedure ChangeRoot(p)

Procedures

* Wake Up(p)

- let (p, q) be the minimum-weight link of p -

lstatus((p, q)) := branch

nstatus(p) := found

enqueue(CONNECT(0), queuep((p, q)))

" Te3t(p)

if 1, the minimum-weight link of p with lstatus(l) -unknown, exists then
testlink(p) := I

enqueue(TEST(nlevel(p), nfrag(p)), queuep())

else

testlink(p) := nil ",,

execute procedure Report(p)]

* Report(p)

if findcount(p) = 0 and testlink(p) = nil then

nstatus(p) := found

enqueue(REPORT(bestwt(p)), queuep( inbranch(p)))

" ChangeRootp)

if lstatus(bestlink(p)) 'branch then
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enqueue(CHANGEROOT, queuep(bestlink(p)))

else [
enqueue(CONNECT(nlevel(p)), queue P( bestlink(p)))

Istatus(bestlink(p)) := branch I

Now we describe the automaton Link((p, q)), for each (p, q) C L(G).

The state consists of the single variable queuepq((p, q)), a FIFO queue of mes-

sages. The set of messages, M, is the same as for Node(p). The queue is empty in

the start state.

Input Actions:

9 ChcnnelSend((p, q), m), m E M
Effects:

enqueue(m, queuepq((p, q)))

Output Actions:

ChannelRecv( (p,qm), mE n
Preconditions:

m at head of queuepq((p, q))
Effects:

dequeue(queuepq((p, q)))

Now we can define the automaton that models the entire network. Define
the automaton GHS to be the result of composing the automata Node(p), for all

p E V(G), and Link(l), for all I E L(G), and then hiding all actions except for

Start(p), p E V(G), InTree(l) and NotlnTree(l), I c L(G).

Given a FIFO queue q and a set M, define q1M to be the FIFO queue obtained
from q by deleting all elements of q that are not in M.

Derived Variables:

* queue( (p. q)) is queuep( (p, q)) I1 qucue,)q((p, q)) 11 queueq((p, q)).

0 tarqucLcL,,((pq)) is queuep((p,q))[IAITA, where MT.4R is the set of all pos-
silble nessages in TAR; similarly for tarqueue,,q((p, q)) and tarqcuv?q((p, q)).

121 I
* %J b%~ ~ - . WV ~ . ,~ .- AA



Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

Similar definitions are made for the dcqueue's, nqueue's, and cqueue's, except
that for the dcqueue's, each INITIATE(l, c,find) message is replaced with a FIND

Message, and for the nqucue's, each INI'rIATE(I, C, *) iiiessage is re)lac(l with -

NOTIFY(l, C) message.

* awake is false if and only if nstatus(p) -= sleeping for all p G V(G).

" For all p E V(G), dcstatus(p) = unfind if nstatus(p) = sleeping or found, and
dcstatus(p) = find if nstatus(p) = find.

" MSF is the subgraph of G whose nodes are V(G), and whose edges are all
edges (p, q) of G such that either (1) lstatus((p, q)) = branch and no CONNECT

message is in queue((p, q)), or (2) lstatus((q,p)) = branch and no CONNECT

message is in queue((p, q)).

" fragments is a set of elements, called fragments, one for each connected com-

ponent of MSF.

Each fragment f has the following components:

" subtree(f), the corresponding connected component of MSF;

" level(f), defined as in NOT;

" core(f), defined as in NOT;

" testset(f), the set of all p E nodes(f) such that one of the following is true:

(1) a FIND message is headed toward p, (2) testlink(p) # nil, or (3) a CONNECT

message is in queue((q,r)), where (q, r) = core(f) and p E subtree(q);

" minlink(f), defined as in DC;

" rootchanged(f), defined as in CON; and

" accmin(f), defined as in TAR and DC.

Define the following predicates on states(GHS). (All free variables are univer-'b
sally quantified.)

e GHS-A: If nstatus(p) = sleeping, then
(a) there is a fragment f such that subtree(f) = {p},
(b) queue((p, q)) is empty for all q, and
(c) Istatus((p, q)) = unknown for all q.
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* GHS-B: If CONNECT(l) is in queue((q,p)), lstatus((p, q)) # unknown, and no

CONNECT is in queue((p, q)), then

(a) the state of queue((q,p)) is CONNECT(1) followed by INITIATE(I + 1, (p,q),

find);

(b) queue((p, q)) is empty;

(c) nstaius(q) find; and

(d) nlevel(p) = nlevel(q) = 1.

e GHS-C: If a CONNECT message is in queue(l), then no FIND message precedes

the CONNECT in queue(l), and no TEST or REJECT message is in queue(l).

* GHS-D: If INITIATE(I,c,find) is in subtree(f), then I = level(f).

e GHS-E: If INITIATE(, C, St) is in queue((p, q)) and (p, q) = core(fragment(p)),

then st = find.

* GHS-F: If TEST(l,c) is in queue((q,p)), then nlevel(q) > 1.

@ GHS-G: If ACCEPT is in queue((q,p)), then nlevel(p) < nlevel(q).

* GHS-H: If testlink(p) 54 nil, then nstatus(p) = find.

* GHS-I: If p is up-to-date, then nlevel(p) = level(fragment(p)).

0 S-J: If p is up-to-date, p V testset(fragment(p)), and (p, q) is the minimum-

weight 'xternal link of p, then nlevel(p) < nlevekq).

9 GHS-K: If subtree(f) = {p} and nstatus(p) # sleeping, then rootchanged(f) =

true.

Let PGHS be the conjunction of GHS-A through GHS-K.

We now define M, = (S,,.A,), an abstraction mapping from GHS to x, for

x = TAR, DC, NOT and CON. S, should be obvious for all x, given the above

derived functions. We now define A,(s, 1r) for all x, states s of GHS, and actions

7r of GHS enabled in s.

* 7r = InTree(l) or NotlnTree(l). A x (s, r) = 7r for all x.

* T = Start(p). Let f = fragment(p).

Case 1: nstatus(p) = sleeping in s. For all x, Ax(s,7-) = Start(p) t.,

ChangeRoot(f), where ix is the same as Sx(s) except that awake = true in t,.
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Case 2: nstatus(p) # sleeping in s. A, (s, 7r) = 7r for all :r.

" 7r = ChannelRecv(k, m). For all x, A,(s, 7r) is empty, with the following ex-

ceptions: If m = CONNECT(l) or CHANGEROOT, then ACON(S, 7r) = 7r. If

m = INITIATE(l, c, st), then ANOT(8, 7r) = ChannelRecv(k, NOTIFY(l, c)), and if

st = find, then ADC(S, 7r) = ChannelRecv(k, FIND). If m = TEST, ACCEPT or

REJECT, then ATAR(S, 7) = 7r. If m = REPORT(W), then ADC(S, 7r) = 7r.

" 7r = ChannelSend(k, rn). Analogous to ChannelRecv(k, m).

" it = ReceiveConnect((q,p),l). Let f = fragment(p) and g = fragment(q).

(Later we will show that the following four cases are exhaustive.)

Case 1: nstatus(p) = sleeping in s. If (p, q) is not the minimum-weight ex-
ternal link of p in s, then A,(s,ir) = ChangeRoot(f) for all x. If (p,q) is the
ininimum-wight external link of p in s, then, for all x, A (s, 7r) = ChangeRoot(f)

t : Merge(f, g), where t., is the state of x resulting from applying ChangeRoot(f) to

Si(s).

Case 2: nstatus(p) # sleeping, I = nlevel(p), and no CONNECT message is in
queue((p, q)) in s. If lstatus((p,q)) = unknown in s, then A,(s,7r) is empty for all
x. If lstatus((p,q)) # unknown in s, then ATAR(S,7r) is empty, and Ax(s,7r)

AfterMerge(p,q) for all other x.

Case 3: nstatus(p) # sleeping, I = nlevel(p), and a CONNECT message is in
queue((p, q)) in s. A.(s, r) = Merge(f,g) for all x.

Case 4: nstatus(p) # sleeping, and I < nlevel(p) in s. A-(s, 7r) = Absorb(f,g)

for al x.

* 7r = Receivelnitiate((q, p), 1, c, st).

ATAR(S, 7i) = SendTest(p) if st = find, and is empty otherwise.

If st 5 find, then ADC(s, 7r) is empty; if st = find and there is a link (p. r)
such that Istatus((p,r)) = unknown in s, then ADC(s, r) = ReceiveFind((qp)); if
st = find and there is no link (p, r) such that Istatus((p, r)) = unknown in s, then

ADC(s, 7t) = ReceiveFind( (q, p)) t TestNode(p), where t is the state of DC resulting
from applying ReceiveFind((q, p)) to SDC(S).

ANOT(S, r) = ReceiveNotify((q, p), 1, c).
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ACON(S, ir) is empty.

7 ir = ReceiveTest((q,p),l,c). Let f = fragment(p). V

Case 1: nstatus(p) = sleeping in s.

ATAR(S, 7r) = ChangeRoot(f) t 7r, where t is the same as STAR(S) except that

rootchanged(f) = true and Istatus(minlink(f)) = branch in t.

Az(s, 7r) = ChangeRoot(f) for all other x.

Case 2: nstatus(p) - sleeping in s.

ATAR(S, 7r) = 7r if I < nlevel(p) or nlevel(p) = level(f) in s, and is empty

otherwise.

ADC(S,7r) = TestNode(p) if I < nlevel(p), c = nfrag(p), testlink(p) = (p,q),

and Istatus((p,r)) # unknown for all r q, in s, and is empty otherwise.

Ax(s, 7r) is empty for all other x.

* 7r = ReceiveAccept((q,p)).

ATAR(S, 70 = 7r.

ADC(S, 7r) = TestNode(p).

A,(s, 7r) is empty for all other x.

* ir = ReceiveReJect((q,p)).

ATAR(S,7r) = 7r.

ADC(S, r)= TestNode(p) if there is no r # q such that Istatus((p,r)) = un-

known in s, and is empty otherwise.

A,(s, ir) is empty for all other x.

o ir = ReceiveReport((q,p), w). Let .f = fragment(p).

Case 1: (p,q) = core(f), nstatus(p) find, iv > bestwt(p), and Istatus

(bcstlink(p)) = branch in s.

ADC(8,lr) = 7r.
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A.(s, r) = ComputeMin(f) for all other x.

Case 2: (p,q) = core(f), nstatus(p) 5 find, w > bestwt(p), and Istatus

(bestlink(p)) # branch in s.

.ADC(s,7r) = r tDC ChangeRoot(f), where tDC is the state of DC resulting
from applying r to SDC(S).

ACON(S, 7r) = ComputeMin(f).

A:(s,7r) = ComputeMin(f) t ChangeRoot(f) for all other x, where t, is the

state of x resulting from applying ComputeMin(f) to Si(s).

Case 8: (p,q) # core(f) or nstatus(p) = find or w < bestwt(p) in s.

ADC(S, ir) = 7r.

A,(s, 7r) is empty for all other x. b

e 7r = Receive ChangeRoot((q,p)). Let f = fragment(p).

AcON(s, r) = 7r.

For all other x, A,(s,7r) = ChangeRoot(f) if lstatus(bestlink(p)) # branch in

s, and is empty otherwise.

For the rest of this chapter, let I be the set of names {TAR, DC, NOT, CON}.

The following predicates are true in any state of GHS satisfying AxcI(Px o Sx) A
PGHS. I.e., they are derivable from PGHS, together with the TAR., DC, NOT, CON.

GC, COM and HI predicates.

9 GHS-L: If AfterMerge(p,q) is enabled for DC or NOT, then a CONNECT mes-
sage is at the head of queue((q,p)).

Proof: First we show the predicate for DC. Let f = fragment(p).

1. (p, q) = core(f), by precondition.

2. FIND is in dcqueue((q,p)), by precondition.
3. No FIND is in dcqueue((p, q)), by precondition.

4. dcstatus(q) = unfind, by precondition.

5. No REPORT is in dcqueue((q,p)), by precondition.
6. q E testset(f), by Claims 1 through 5 and DC-G.

7. testlink(p) = nil, by Claim 4 and GHS-H.
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8. A CONNECT is in queue((q,p)), by Claims 1, 3, 6 and 7.
9. (p, q) E subtree(f), by Claim 1 and COM-F.

10. No INITIATE(*, *,found) is in queue((q, p)), by Claim 1 and GHS-E.

11. No CHANGEROOT is in queue((q,p)), by Claim 1.

12. No ACCEPT is in queue((q,p)), by Claim 9 and TAR-F.

13. CONNECT precedes any FIND, TEST, or REJECT in queue((q, p)), by Claim GHS-C.

Claims 5, 8, 10, 11, 12 and 13 give the result.

For NOT, we show that if AfterMerge(p, q) for NOT is enabled, then After-

Merge(p, q) for DC is enabled.

1. (p, q) = core(f), by precondition.

2. NOTIFY(nlevel(p) + 1, (p, q)) is in nqueue((q,p)), by precondition.

3. No NOTIFY(nievel(p) + 1, (p, q)) is in nqueue((p, q)), by precondition.

4. nlevel(q) # nlevel(p) + 1, by precondition.

5. INITIATE(nlevel(p) + 1,(p,q),find) is in queue((q,p)), by Claims 1 and 2 and
GHS-E.

6. nlevel(p) + 1 = level(f), by Claim 5 and GHS-D.

7. No INITIATE(*, *,find) is in queue((p, q)), by Claims 3 and 6 and GHS-D.

8. q is not up-to-date, by Claims 4 and 6 and GHS-I.

9. dcstatus(q) # find, by Claim 8 and DC-I(a).

10. No REPORT is in queue((q,p)), by Claims 1 and 8 and DC-C(a).

By Claims 1, 5, 7, 9 and 10, AfterMerge(p,q) for DC is enabled. 0

e GHS-M: If testlink(p) nil or findcount(p) > 0, then no FIND message is

headed toward p, and no CONNECT message is in queue((q,r)), where (q,r) =

core(fragment(p)) and p E subtree(q).

Proof:

1. testlink(p) 5 nil or findcount(p) > 0, by assumption.

2. nstatus(p) = find, by Claim 1 and either GHS-H or DC-H(b).

3. dcstatus(t) = find for all t between q and p inclusive, by Claim 2 and DC-H(a).

4. No FIND message is headed toward p, by Claim 4 and DC-D(b).

5. No CONNECT is in queue((q, r)), or Istatu((r,q)) = unknown, or CONNECT is in

queue((r,q)), by Claim 3 and GHS-B(c).

6. (q, r) E .ubtree(fragmcnt (p)), by COM-F.

7. lstatfu.q((r,q)) ) unknown, by Claim 6 and TAR-A(b).

8. If CONNECT is in queue((r, q)) then no CONNECT is in queue((q,r)), by Claim 6.
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9. If no CONNECT is in queue((r, q)) then no CONNECT is in queue((q, r)), by Claims

5 and 7.

Claims 4, 8 and 9 give the result.

Lemma 25: GHS simultaneously simulates the set of automata {TAR, DC, NOT,

CON} via {.M, : x r 1}, PGHS, and {P" : x E I}.

Proof: By inspection, the types are correct. By Corollaries 18, 20, 22 and 24, P

is a predicate true in every reachable state of x, for all x.

(1) Let s be in start(GHS). Obviously PGHS is true in s and Sx(s) is in

start(x) for all x.

(2) Obviously, A,(s, ir)lext(x) = ?rlext(GHS) for all x.

(3) Let (s', ir, s) be a step of GHS such that Ae,, P'(S2 s')) and PGHS(s')

are true. By Corollaries 18, 20, 22 and 24, we can assume the HI, COM, GC, TAR,

DC, NOT and CON predicates are true in s', as well as the GHS predicates. Below,

we show (3a), that PGHS is true in s (only for those predicates whose truth in s is

not obvious), and either (3b) or (3c), as appropriate, that the step simulations for

TAR, DC, NOT, and CON axe correct.

i) 7r is InTree((p,q)). Let f = fragment(p) in s'.

(3a) Obviously, PGHS is true in s.

(3b)/(3c) A 1 (s',ir) = 7r for all x.

Claims about s':

1. answered((p, q)) =false, by precondition.

2. lstatus((p, q)) = branch, by precondition.

3. nstatus(p) # sleeping, by Claim 2 and GHS-A(c).

4. awake = true, by Claim 3.

5. (p,q) E subtree(f) or (p,q) = minlink(f), by Claim 2 and TAR-A(a).

r is enabled in S,(s') by Claims 1 and 2 for x = TAR, and by Claims 1, 4 and

5 for all other x. Obviously, its effects are mirrored in Sx(s) for all x.

ii) 7r is NotInTree((p,q)). Let f = fragment(p) in s'.

(3a) Obviously, PGJS is true in s.
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(3b)/(3c) A,(s, 7r) = 7r for all x.

Claims about s': -*

1. answered((p, q)) = false, by precondition.

2. lstatus((p, q)) = rejected, by precondition.

3. nstatus(p) # sleeping, by Claim 2 and GHS-A(c).

4. awake = true, by Claim 3.

5. fragment(p) = fragment(q) and (p, q) # subtree(f), by Claim 2 and TAR-B.

ir is enabled in S,(s') by Claims 1 and 2 for x = TAR, and by Claims 1, 4 and
5 for all other x. Obviously its effects are mirrored in Sx(s) for all x.

iii) 7r is Start(p). Let f = fragment(p).

Case 1: nstatus(p) # sleeping in s'. A,(s',7r) = 7r for all x. Obviously
S.(s')7rSx(s) is an execution fragment of x for all x, and PGHS is true in s.

Case 2: nstatus(p) = sleeping in s'.

(3b)/(3c) For all x, Ax(s',7r) = 7r t , ChangeRoot(f), where tx is the same as

S,(s') except that awake = true in t.. For all x, we must show that 7r is enabled

in S,(s') (which is true because 7r is an input action), that its effects are mirrored
in tx (which is true by definition of t,), that ChangeRoot(f) is enabled in t,, and
that its effects are mirrored in S,(s).

Let l be the minimum-weight external link of p. (It exists by GHS-A(a) and
the assumption that IV(G) > 1.)

Claims about s':

1. nstatus(p) = sleeping, by assumption.

2. subtree(f) = {p}, by Claim 1 and GHS-A.
3. minlink(f) = 1, by Claim 2 and definition.

4. lstatus((p,q)) = unknown, for all q, by Claim 1 and GHS-A(c).
5. rootchanged(f) = false, by Claim 4 and TAR-H.

Claims about t,, for all x:

6. awake = true, by definition.

7. ,subtree(f) = {p}, by Claim 2.

S. rootchangcd(f) = false, by Claim 5.
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9. minlink(f) = 1, by Claim 3.

ChangeRoot(f) is enabled in tCON by Claims 6, 7 and 8. For all other x,

ChangeRoot(f) is enabled in t, by Claims 6, 8 and 9.

Claims about s:

10. CONNECT(O) is in queue(l), by code.
11. Istatus(l) = branch, by code.

12. rootchanged(f) = true, by Claims 10 and 11 and choice of 1.

For most of the other derived variables, it is obvious that they are the same in s'

and s. Although nstatus(p) changes, dcstatus(p) remains unchanged. Even though

lstatus(l) changes to branch, MSF does not change, since a CONNECT message is in

queue(l).

For x = TAR, the effects of ChangeRoot(f) are mirrored in Si(s) by Claims

11 and 12. For x = CON, the effects of ChangeRoot(f) are mirrored in SL(s) by

Claim 10. For all other x, the effects of ChangeRoot(f) are mirrored in S,(s) by

Claim 12.

(3a) More Claims about s':

13. lstatus((q,p)) j rejected, for all q, by Claim 2 and TAR-B.

14. If lstatus((q,p)) = branch, then a CONNECT is in queue((q,p)), for all q, by

Claim 2.
15. testset(f) = 0, by Claim 3 and GC-C.

16. testlink(p) = nil, by Claim 15.

17. queue(l) is empty, by Claim 1 and GHS-A(b).

GHS-A is vacuously true since nstatus(p) = found in s.

GHS-B: vacuously true for CONNECT added to queue(l) by Claims 13 and 14;
vacuously true for any CONNECT already in queue(reverse(l)) by Claim 10; vacuously

true for any CONNECT already in queue((q,p)), for any q such that (p, q) # 1, by

Claim 4.

GHS-C is true by Claim 17 and code.

GHS-H is vacuously true by Claim 16.
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No change affects the others.

iv) 7r is ChannelRecv(k,m) or ChannelSend(k,m). Obviously PGns(s)

is true, and the step simulations are correct.

v) 7r is ReceiveConnect((q,p),l). Let f = fragment(p), and g = fragmen(q)

in s'. We consider four cases. We now show that they are exhaustive, i.e., that

I > nlevel(p) is impossible. First, suppose (q, p) is an external link of g. By CON-
D, I = level(g) and (q,p) = minlink(g). By NOT-D, level(g) nilevel(p). Second,
suppose (q,p) is an internal link of g = f. By CON-E, (p,q) = core(f), and

1 < level(f). But by NOT-C, nlevel(p) level(f) - 1.

Case 1: nstatus(p) = sleeping. This case is divided into two subcases. First we

prove some claims true in both subcases. Let k be the minimum-weight external

link of p.

Claims about s':

1. CONNECT(l) is at head of queuep((q,p) ), by precondition.

2. nstatus(p) = sleeping, by assumption.
3. subtree(f) = {p}, by Claim 2 and GHS-A.
4. rootchanged(f) = false, by Claim 2, GHS-A(c) and TAR-H.

5. minlink(f) = k, by Claim 3 and definition.

6. awake = true, by Claim 1 and CON-A.
7. No FIND is in queue((q,p)), by Claim 3 and DC-D(a).

8. f # g, by Claim 3.
9. (q, p) is an external link of g, by Claim 8.
10. minlink(g) = (q,p), by Claims 1 and 9 and CON-D
11. level(g) K level(f), by Claim 10 and COM-A.

12. 1 = level(g), by Claims 1 and 9 and CON-D.

13. level(f) = 0, by Claim 3 and COM-F.

14 1 < 0, by Claims 11, 12 and 13.
15. 1 = 0, by Claim 14 and COM-F.
16. nlevel(p) = 0, by Claims 3 and 13. 5

Subca.qe la: (p,q) j k. By Claim 2 and GHS-A(c), lstatus((p,q)) unknown
in s'. and the same is true in s. This fact, together with Claims 15 and 16, shows S

that the only change is that the CONNECT(l) message is requeued.
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(3a) PGHS can be shown to be true in s by an argument very similar to that

for 7r = Start(p), Case 2, since the only change is that the CONNECT(l) message is

requeued. Claim 7 verifies that GHS-C is true in s.

(3b)/(3c) For all x, Ax(s', 7r) = ChangeRoot(f). For x = CON, ChangeRoot(f)

is enabled in Sx(s') by Claims 6, 4 and 3; for all other x, it is enabled by Claims 6,

4 and 5.

Claims about s:

17. Istatus(k) = branch, by code.

18. CONNECT(0) is added to the end of queue(k), by code.

19. rootchanged(f) = true, by Claims 17 and 18 and choice of k.

For most of the other derived variables, it is obvious that they are the same in s'

and s. Although nstatus(p) changes, dcstt'us(p) remains unchanged. Even though

Istatus(k) changes to branch, MSF does not change, since a CONNECT message is

in queue(k).

The effects of ChangeRoot(f) are mirrored in S,(s) by Claims 17 and 19 for

x = TAR, by Claim 18 for x CON, and by Claim 19 for all other x.

Subcase ib: (p,q) = k.

(3b)/(3c) For all x, Ax(s', 7r) = ChangeRoot(f) tx Merge(f,g), where tx is the

result of applying ChangeRoot(f) to S(s'). ChangeRoot(f) is enabled in S(s') by

Claims 6, 4 and 3 for x = CON, and by Claims 6, 4 and 5 for all other x. Its effects

are obviously mirrored in t,.

More claims about s':

20. k = (p, q), by assumption.

21. (p, q) is an external link of f, by Claim S.

22. rootchanged(g) = true, by Claim 1 and Claim 9.

23. Only one CONNECT message is in queue((q,p)), by Claims 1 and 9 and CON-D.

24. lstatus((q,p)) = branch, by Claims 10 and 22 and TAR-H.

25. level(g) = 0, by Claims 12 and 15.

26. subtree(g) = {q}, by Claim 25 and COM-F.

27. nlevel(q) = 0, by Claims 25 and 26.
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28. No INITIATE message is in queue((p, q)) or queue((q, p)), by Claims 9 and 21 and

NOT-H(e).

29. No CONNECT message is in queue((p, r)) for any r : q, by Claims 3 and 20 and

CON-D.

30. No CONNECT message is in queue((q, r)) for any r p, by Claims 10 and 26 and

CON-D.

Claims about t,,:

31. f 4 g, by Claim 8.

32. rootchanged(f) = true, by definition of t'.

33. rootchanged(g) = true, by Claim 22.

34. minedge(f) = minedge(g) = (p,q), by Claims 5, 10 and 20.

35. If x = CON, then CONNECT(O) is in cqueue((p,q)), by definition of t,.

36. If x = CON then CONNECT(0) is at the head of cqueue((q,p)), by Claims 1

and 15.

Merge(f, g) is enabled in tx by Claims 34, 35 and 36 for x = CON, and by

Claims 31, 32, 33 and 34 for all other x.

As we shall shortly show, MSF has changed - the connected components

corresponding to f and g have combined. Let h be the fragment corresponding to

this new connected component.

Claims about s:

37. No CONNECT is in queue((q,p)), by Claim 23 and code.

38. lstatus((q, p)) = branch, by Claim 24 and code.

39. (p. q) C MSF, by Claims 37 and 38.

40. ,,ubtree(h) is nodes p and q and the edge between them, by Claims 3, 26 and 39.

41. INITIATE(1, (p, q),find) is in queue((p, q)), by code. S

42. level(h) = 1, by Claims 16, 27, 28, 40 and 41.

43. core(h) = (p, q), by Claims 16, 27, 28, 40 and 4 .

44. CONNECT(0) is in queue((p, q)), by code.

45. testset(h) = {p, q}, by Claims 41 and 44.

46. minlink(h) = nil, by Claim 45.

47. rootchanged(h) = false, by Claims 29, 30 and 40.

48. f and g are no longer in fragment.,, by Claims 3, 26, 40 and 43.

The effects of Mergc(f,g) are mirrored in S,(s) by Claims 40, 42, 43, 45, 46.,-

47 and 48 for x = TAR; by Claims 40, 41, 42, 43, 45, 47 and 48 for x = DC; by N
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Claims 40, 41, 4b, 47 and 48 for x = NOT; and by Claims 40, 42, 43, 46 and 48 for

X = CON.

(3a) GHS-A: vacuously true for p by code. By Claim 1 and GHS-A(c).
nstatus(q) # sleeping in s'; since the same .3 true in s, changing q's subtree does

not invalidate GHS-A(a).

GHS-B: Obviously, the only situation affected is the CONNECT added to

quezte((p, q)).

(a) queue((p, q)) has the correct conteni s in s because of the code and the fact
that queue((p, q)) is empty in s' by Claim 2 and GHS-A(b).

(b) To show that queue((q,p)) is empty in s, we n:ust show that it contains

only the CONNECT in s'. By Claim 1 and GHS-C, there is no TEST or REJECT

in queue((q,p)). By Claim 2 and GHS-H, testlink(p) = nil; thus, by TAR-D, no

ACCEPT is in queue((q, p)). By Claim 3, DC-A(g) and DC-B(a), there is no REPOfRT

in queue((q,p)). By Claim 3 and NOT-H(e), there is no NOTIFY in queue((q,p)).

By Claim 3 and CON-C, there is no CIIANGEROOT in queue((q,p)). By Claim 1.

CON-D and CON-E, there is only one CONNECT in queue((q,p)).

(c) nstatus(p) € find in s by code.

(d) By Claims 16 and 27, nlevel(p) = nlcvcl(q) = 0.

GHS-C: No FIND is in queue((p, q)) in .s' by Claim 3 and DC-D(a). No REJECT

is in queue((p, q)) in s' by Claim 3 and TAR-G. No TEST(/, c), for any I and c. is

in queue((p,q)) in s', because by Cieims 25 and 13 and TAR-E(b) and TAR-E(c),

I = 0; yet by TAR-M, I > 1.

GHS-D: By Claim -2.

GHS-E: By code for the INITIA'I E added to qByeuc((p, , By Claim 28. this is

the only relevant message affected.

GHS-H is true in s since nstatus(p) goes from sleeping to found, and testlinkl(p)

is unchanged.

GHS-I: By Claim 45. p and q are both in testset(h) in s. We now show that
nqtatn.(p) : find and n.Rtatu-R(q) # find. Then by Claim 40, no node in subtrce(li) is
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up-to-date, so the predicate is vacuously true (for h). By code, dcstatus(p) = found.

By Claim 10 and GC-C, testset(g) = (0 in s'; by Claim 26, no REPORT message is in

subtree(g) in s'. Thus, by DC-I(b), dcstatus(q) # find in s'.

GHS-J: vacuously true by Claims 40 and 45 for p and q. No relevant change

for any other node.

No change affects the rest.

Case 2: nstatus(p) : sleeping, I = nlevel(p), and no CONNECT message is in

qucue( (p, q)) ins 1 .

Subcase 2a: lstatus((p, q)) = unknown in s'. The only change in going from s'
to . is that the CONNECT message is requeued.

(3a) The only GHS predicates affected are GHS-B(a) and GHS-C. By TAR-

A(b), (p,q) :A subtree(f). Thus, by DC-D(a), no FIND is in queue((q, p)) in s', and

the predicates are still true in s.

(3b)/(3c) A.(s',7r) is empty for all x. We now show that Sx(s') = Sx(s)

for all x, by showing that cqueue((q,p)) contains only the one CONNECT message

in s'. By TAR-A(b), (p,q) is not in MSF. Thus, by CON-C, no CHANGEROOT

is in cque-u((,,p)). By CON-D and CON-E, only one CONNECT message is in

cqueue( (q,p)).

Subcase 2b: lstatus((p,q)) :A unknown in s'.

(3b)/(3c) ATAR(S'. 7) is empty, and A,(s', 7r) AfterMerge(p, q) for all other

..

Claims about s':

1. CONNECT is at head of queuep((q, p)), by precondition.

2. nstatus(p) :A sleeping, by assurmiption.

3. nlevel(p) = 1, by assumption.

-1. No ('ONNE;|T is ill quct(:((p,q)), l)y assumption.
5. lstatus( (p, q) # unknown, by assumption.

G. If lstatus((p, q)) = rejected, then fraqment(p) = fragment(q), by TAR-B.
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7. If lstatus((p,q)) = branch, then (p,q) E subtree(f), by Claim 4 and definition of
MSF.
8. (p, q) is an internal link of f, by Claims 5, 6 and 7.
9. (p, q) = core(f), by Claims 1 and 8 and CON-E. S
10. INITIATE(nlevel(p) + 1, (p, q),find) is in queue((q,p)), by Claims 1, 3, 4 and 5
and GHS-B(a).
11. No INITIATE(nlevel(p) + 1,(p,q),*) is in queue((p, q)), by Claims 1, 3, 4 and 5
and GHS-B(b).
12. dcstatus(q) 5 find, by Claims 1, 4 and 5 and GHS-B(c).
13. No REPORT is in queue((q,p)), by Claims 1, 4 and 5 and GHS-B(a).
14. nlevel(q) = 1, by Claims 1, 4 and 5 and GHS-B(d).

AfterMerge(p,q) is enabled in S,(s') by Claims 9, 10, 11, 12 and 13 for x = DC;
by Claims 3, 9, 10, 11 and 14 for x = NOT; and by Claims 1 and 9 for x = CON.

Claims about s:

15. CONNECT(l) is dequeued from queuep((q,p)), by code.
16. FIND is in queue((p, q)), by code.
17. INITIATE(nlevel(p) + 1, (p, q),find) is in qucue((p, q)), by code.

The only derived variables that are not obviously unchanged are testset(f),
level(f) and core(f). Claims 15 and 16 show that testset(f) is unchanged. Claims
10 and 17 show that level(f) and core(f) are unchanged.

The effects of AfterMerge(p, q) are mirrored in S.i(s) by Claim 16 for x = DC;
by Claim 17 for x = NOT; and by Claim 15 for x = CON. It is easy to see that
STAR(S') = STAR(S).

(3a) GHS-A: By Claim 2, adding a message to a queue of p does not invalidate
GHS-A(b).

GHS-B: By Claim 8 and CON-E, there is only one CONNECT message in
queue((q,p)) in s'. Since it is removed in s, the predicate is vacuously true for
a CONNECT in queuc((q,p)). By Claim 4. the predicate is vacuously true for a
CONNECT in queue((p, q)).

GHS-C: By Claim 4, vacuously true for qucue((p,q)).
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GHS-D: By Claim 10 and GHS-D. nlevel(p) + 1 = level(f). This together with

Claim 9 gives the result.

GHS-E is true by code.

No change affects the rest.

Case 8: nstatus(p) #6 sleeping, I = nlevel(p), and a CONNECT message is in

queue((p, q)) in s'.

(3b)/(3c) A.,(s', 7r) = Merge~ff,g) for all x.

Claims about s':

1. CONNECT(1) is at head of queue((q, p)), by precondition.
2. 1 = nlevel(p), by assumption.

3. CONNECT(m) is in queuc((p, q)), by assumption.
4. (p, q) is an external link of p, by Claims 1land 3.
5. (q, p) is an external link of q, by Claims 1 and 3.

6. f :A g, by Claim 4.
7. rootchariged(f) = true, by Claims 1 and 4.

8. rootchanged(g) = true, by Claims 3 and 5.
9. (q, p) = minlink (g), by Claims 1 and 5 and CON-D.
10. (p, q) = minlink (f ), by Claims 3 and 4 and C ON-D.
11. minedge(f) =minedge(g), by Claims 9 and 10.
12. m = level(f), by Claims 3 and 4 and CON-D.
13. nlevel(p) = level(f), by Claim 10 and NOT-D.
14. m = 1, by Claims 2, 12 and 13.

Merge(f,g) is enabled in SCONWs) by Claims 1, 3, 4, 5 and 14, and for all

other x by Claims 6, 7, 8 and 11.

15. Only one CONNECT message is in qucue((q,p)), by Claim 1 and CON-D.
16. lstatus((q,p)) =branch, by Claims 8 and 9 and TAR-H.

17. lstatus((p, q)) =branch, by Claims 7 and 10 and TAR-H.
18. level(g) =1, by Claims 1 and 5 and CON-D.

19. If INITIATE(l', C, *)is in subtreeff), then 1' < 1, by Claims 12 and 14.
20. If INITIATE(I', C, *)is in .subtree(g), then 1' < 1, by Claim 18.
21. mlcvcl(r) <5 1 for all r E nod cs4(f). by Claims 12 and 14.
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22. nlevel(r) < 1 for all r E nodes(g), by Claim 18.

23. No INITIATE message is in queue((q,p)) or queue((p, q)), by Claims 4 and 5 and

NOT-H(e).

24. No CONNECT is in queue((r, t)), where r E nodes(f), and (r,t) # (p, q), by Claim

10 and CON-D and CON-F.

25. No CONNECT is in queue((r,t)), where r E nodes(g) and (r,t) # (q,p), by Claim

9 and CON-D and CON-F.

26. (p,q) # core(f), by Claim 4 and COM-F.

27. (p, q) # core(g), by Claim 5 and COM-F.

As we shall shortly show, MSF has changed -- the connected components

corresponding to f and g have combined. Let h be the fragment corresponding to

this new connected component.

Claims about s:

28. No CONNECT is in queue((q,p)), by Claim 15 and code.

29. lstatus((q,p)) = branch, by Claim 16.

30. (p, q) E MSF, by Claims 28 and 29.

31. subtree(h) is the union of the old subtree(f) and subtree(g) and (p, q), by Claim

30.

32. INIriATE(l + 1, (p, q),find) is in queue((p, q)), by Claim 2 and 17 and code.

33. if INITIATE(l', C, *) is in subtree(b), then ' < I + 1, by Claims 19, 20, 23, 31 and

32.

34. nlevel(r) < I for all r E nodes(h), by Claims 21, 22 and 31.

35. level(h) = I + 1, by Claims 33 and 34.

36. core(h) = (p, q), by Claims 19, 20, 23, 31. 32, and 34.

37. CONNECT(l) is in queue((p, q)), by Claims 3 and 14

38. testset(h) = nodes(h), by Claims 31, 32 and 37.

39. minlink(h) = nil, by Claim 38.

40. rootchanged(h) = false, by Claims 24. 25 and 31. .

41. f and g are no longer in fragments, by Clams 26, 27, 31 anmd 36.

The effects of Merge(f,g) are mirrored in S,(s) by Claims 31, 35, 36, 38, 39.

40 and 41 for TAR; by Claims 31, 35, 36, 38, 40 and 41 for DC; by Claims 31, 39,

40 and 41 for NOT; and by Claims 28, 31, 35. 36, 39, and 41 for CON.

(3a) GHS-A: Vacuously true for p by assumption. Vacuously true for q by

Claim 1 and GHS-A(b).
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GHS-B: Obviously, the only situation affected is the CONNECT in queue((p, q)).

(a) We must show that in s', queue((p, q)) consists only of a CONNECT(l) mes-
sage. (The code adds the appropriate INITIATE message.) By Claim 3 and GHS-C,

no TEST or REJECT is in queue((p, q)). By Claim 4, DC-A(g) and DC-B(a), no
REPORT is in queue((p, q)). By Claim 23, no NOTIFY is in queue((p, q)). By Claim 4

and CON-C, no CHANGEROOT is in queue((p, q)). By Claims 3 and 14, a CONNECT(l)

message is in queue((p, q)), and by CON-E and CON-F, it is the only CONNECT mes-

sage in that queue.

(b) A very similar argument to that in (a) shows that in s', queue((q, p)) consists

only of a CONNECT(l) message. (Since it is removed in s, the queue is then empty.)

(c) If Inodes(f) > 1, then dcstatus(p) # find by Claim 10. Suppose
subtree(f) = {p}. Obviously, no REPORT message is headed toward p in s'. By

Claim 10 and GC-C, testset(f) = 0 in s'. Thus, by DC-I(b), dcstatus(p) # find in
s'. In both cases, nstatus(p) does not change in s.

(d) nlevel(p) = I in s' by assumption. nlevel(q) = 1 in s' by Claims 9 and 18

and NOT-D. These values are unchanged in s.

GHS-C: By the same argument as in GHS-B(a), adding the INITIATE message

is OK.

GHS-D: by Claim 35.

GHS-E: By code, for the INITIATE added. By Claim 23, there are no leftover

INITIATE messages affected by the change of core.

GHS-I: We show no r E nodes(h) in s is up-to-date. By Claim 38, r is in
testset(h). By the same argument as in GHS-B(c), dcstatus(r) find.

GHS-J: Vacuously true by Claim 38. V

No change affects the rest.

Case 4: nstatus(p) # sleeping, and I < nlevel(p) in s'.

(3b)/(3c) A. (s', r) = Ab.sorb(f,g) for all .r.

Clainis abots'*
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1. CONNECT(l) is at head of queue((q,p)), by precondition.

2. 1 < nlevel(p), by assumption.

3. lstatus((p,q)) = unknown, or a CONNECT is in queuc((p, q) ), by Claims I and( 2

and GHS-B(d).

4. (q,p) is an external link of g, by Claims 1 and 3.

5. minlink(g) = (q,p), by Claims 1 and 4 and CON-D.

6. 1 = level(g), by Claims 1 and 4 and CON-D.

7. rootchanged(g) = true, by Claims 1 and 4.

8. nlevel(p) < level(f), by definition of level(f).

9. level(g) < level(f), by Claims 2, 6 and 8.

10. lstatus((q, p)) = branch, by Claims 5 and 7 and TAR-H.

11. If INITIATE(', C,*) is in subtree(g), then ' < level(f), by Claims 6 and 9.
12. If INITIATE(l', C, *) is in subtree(f), then ' < level(f), by definition of level(f).

13. nlevel(r) < level(f), for all r E nodes(g), by Claims 6 and 9.

14. nlevel(r) < level(f), for all r E nodes(f), by definition of level(f).

15. No INITIATE message is in queue((q, p)) or queue((p, q)), by Claim 4 and NOT-

H(e).

16. No CONNECT message is in queue((r,t)), where r E nodes(g), (r,t) # (q,p), by

Claim 5 and CON-D and CON-F.

17. f # g, by Claim 4.

18. 1 > 0, by Claim 6 and COM-F.

19. level(f) > 0, by Claims 18 and 9.

20. core(f) # nil, by Claim 19 and COM-F.

21. core(f) G subtree(f), by Claim 20 and COM-F.

22. If subtree(g) = {q}, then core(g) = nil, by COM-F.

23. if subtree(g) 7# {q}, then core(g) E subtree(g), by COM-F.

24. Only one CONNECT message is in queue((q,p)), by Claims 1 and 4 and CON-D.

25. testset(g) 0, by Claim 5 and GC-C.

26. testlink(r) = nil, for all r E nodes(g), by Claim 25.

27. If testlink(p) # nil, then p E testset(f), by definition.

28. If testlink(p) # nil, then nstatus(p) = find, by GHS-H.

29. If nstatus(p) = find, then no FIND message is headed toward p, by DC-D(b) and

DC-H(a).

30. lstatus((r, t)) # unknown, where (r, t) = core(f), by Claim 21 and TAR-A(b).

31. If CONNECT is in queuc((rt)), then no CONNECT is in queue((t,r)), where

(rt) = core(f), by Claim 21.

32. If nstatus(p) = find and p E subtree(r), then nstatus(r) = find, for all r, by

DC-H(a).
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33. If nstatus(p) = find, then no CONNECT is in queue((r,t)), where (r, t) = core(f)

and p E subtree(r), by Claims 30, 31 and 32 and GHS-B(c).

34. If nstatus(p) = find and p E testset(f), then testlink(p) : nil, by Claims 29 and

33.

Absorb(fg) is enabled in S,(s') by Claims 7, 9 and 5 for TAR and DC; by

Claims 7, 6 and 2, and 5 for NOT; and by Claims 1, 6 and 9, and 5 for CON.

As we shall shortly show, MSF has changed - the connected components

corresponding to f and g have combined. Let h be the fragment corresponding to

this new connected component. We shall show that h = f, i.e., that the core of h

in s is non-nil, and is the same as the core of f in s'.

Claims about s:

35. No CONNECT message is in queue((q, p)), by Claim 24 and code.

36. status((q,p)) = branch, by Claim 10.

37. (p, q) E MSF, by Claims 35 and 36.

38. subtree(h) is the union of the old subtree(f) and subtree(g) and (p, q), by Claim

37.

39. INITIATE(nlevel(p), nfrag(p), nstatus(p)) is in queue((p, q)), by code.

40. level(h) = old level(f), by Claims 11, 12, 13, 14, 15 and 38.

41. core(h) = old core(f), by Claims 11, 12, 13, 14, 15 and 38.

42. h = f, by Claim 41.

43. g V fragments, by Claims 38 and 41.

44. NOTIFY(nlevel(p), nfrag(p)) is added to queuep((p, q)), by code.

First, we discuss how testset(f) changes. If p E testset(f) in s' because of a

FIND or CONNECT message, then every node in nodes(g) in s' is in testset(f) in s

because of the same FIND or CONNECT message. If p E testset(f) in s' because

testlink(p) : nil, then a FIND message is added to queue((p,q)) in s, causing every

node formerly in nodes(g) to be in testset(f). If p is not in testset(f) in s', then no

FIND message is headed toward p, and no CONNECT message is in queue((r,t)), with

p E subtree(r); thus, Claim 25 implies that in s, no node formerly in nodes(g) is in

testset(f).

By the previous paragraph, and inspection, the effects of Absorb(f, g) are mir-

rored in S 1 (.s) by Claims 36, 38, 42 and 43 for x = TAR; by Claims 27, 28, 34, 38,

42 and 43 for x = DC; by Claims 38, 42, 43 and 44 for r = NOT; and by Claims

35, 38, 42 and 43 for x - CON.
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(3a) GHS-A is vacuously true in s by assumption that nstatus(p) # sleeping in
S."

GHS-B: vacuously true for a CONNECT in queue((q, p)) by Claim 35. By Claim

4 and CON-D, if CONNECT is in queue((p,q)), then minlink(f) = (p,q). But by

Claim 9 and COM-A, this cannot be. Thus the predicate is vacuously true for a

CONNECT in queue((p, q)).

GHS-D: Suppose nstatus(p) = find in s'. By DC-I(a), p is up-to-date, and by

GHS-I, nlevel(p)= level(f).

GHS-E: Vacuously true by Claims 4, 21 and 41.

GHS-I: As argued in GHS-J, no node formerly in nodes(g) is up-to-date in s.

No change affects nodes formerly in nodes(f).

GHS-J: Let r be any node in nodes(f) in s'. If r is up-to-date, r V testset(f),

and (r,t) is the minimum-weight external link of r, then nlevel(r) < nlevel(t) by

GHS-J. By Claim 9, fragment(t) # g. Thus in s, (r,t) is still external. By DC-

L, inbranch(r) is in subtree(g) (or nil) for all r E nodes(g) in s'. By Claim 21,

core(f) E subtree(f) in s', and by Claim 41, core(f) is unchanged in s. Thus
following inbranches in s from any r formerly in nodes(g) does not lead to core(f),

so no r formerly in nodes(g) is up-to-date in s.

No change affects the rest.

vi) 7r is ReceiveInitiate((q,p),1,c,st). Let .f = fragment(p).

(3b)/(3c) Case 1: st = find. ATAR(S'.7r) = SendTest(p).

If there is a link (p, r) such that lstatus((p, r)) = unknown in s', then ADC(s', 7r)

= ReceiveFind((q,p)); otherwise ADC(s',Tr) = ReceiveFind((q,p)) t TestNode(p),

where t is the state resulting from applying ReceiveFind((q,p)) to SDC(S').

ANOT(S', 7r) = ReceiveNotify( (q,p), l,c).

ACON(s', 7r) is empty.

Claims about s':

1. INITIATE(l,c,find) is at the head of queue((q,p)), by precondition.
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2. (p,q) E subtree(f), by Claim 1 and DC-D(a).

3. minlink(f) = nil, by Claims 1 and 2.

4. If lstatus((p, r)) = rejected then fragment(p) = fragment(r), for all r, by TAR-B. (p

5. If lstatus((p,r)) = branch, then (p,r) E subtree(f), for all r, by Claim 3 and

TAR-A(a).

6. If (p,r) E subtree(f), then lstatus((p,r)) = branch for all r, by TAR-A(b).
7. If ISI = 0 and no lstatus((p,r)) is unknown, then p # mw-root(f), by definition

of mw-root and Claims 4, 5 and 6.

8. p E testset(f), by Claims 1 and 2.
9. dcstatus(p) = unfind, by Claim 1 and DC-D(b).

10. testlink(p) = nil, by Claim 9 and GHS-H.

11. 1 = level(f), by Claims 1 and 2 and GHS-D.

12. c = core(f), by Claims 1 and 11 and NOT-A.

13. No other FIND message is headed toward p, by Claims 1 and 2 and DC-S.

14. core(f ) : nil, by Claim 2 and COM-F.

Let (r,t) = core(f).

15. (r,t) E subtree(f), by Claim 14 and COM-F.

Let p be in subtree(r).

16. If (p, q) # (r, t) then dcstatus(q) = find, by Claim 1 and DC-D(a).
17. If (p, q) # (r, t) then dcstatus(r) = find, by Claim 16 and DC-H(a).

- Z Tf (n-a) : (r.t) then either no CONNEC-I is in queue((r,t)), or lstatus((t, r)) =

unknown, or a CONNECT is in queue((n, r )I7 Cr i' 17 and- GTS.B(c).

19. If (p,q) = (r,t) then either no CONNECT is in queue((r,t)), or lstatus((t,r)) =
unknown, or a CONNECT is in queue((t, r)), by Claim 1 and GHS-B(b).
20. Either no CONNECT is in queue( (r, t)), or lstatus((t, r)) = unknown, or a I

CONNECT is in queue((t, r)), by Claims 18 and 19.

21. lstatus((t,r)) : unknown, by Claim 15 and TAR-A(b).

22. If CONNECT is in queue((t, r)) then no CONNECT is ill queue( (r, t)), by Claim 15.

23. If no CONNECT is in queue((t, r)) then no CONNECT is in queue((r, t)), by Claims

20, 21 and 22.
24. No CONNECT is in queue((r,t)), by Claims 22 and 23.

25. If (p,q) # (r,t) then AfterMerge(p,q) is not enabled (for DC or NOT), since
(r,t) = core(f).

26. If (p,q) = (r,t) then AfterMerge(p,q) is not enabled (for DC or NOT), by

Claim 24 and GHS-L.
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27. If there is no unknown link of p, then there is no external link of p, by Claims

4 and 5.

28. If (p, q) 3 (r,), then q is up-to-date, by Claim 16 and DC-I(a). .

SendTest(p) is enabled in STAR(S') by Claims 8 and 10. ReceiveFind((q,p)) is

enabled in SDC(s') by Claims 1, 25 and 26. ReceiveNotify( (q, p), 1, c) is enabled in

SNOT(S') by Claims 1, 25 and 26.

Claims about t: (only defined when there are no unknown links of p in s')

29. p E testset(f), by Claim 8.
30. There is no external link of p, by Claim 27.

31. dcstatus(p) = find, by definition of t.

TestNode(p) is enabled in t by Claims 29, 30 and 31.

Claims about s:

32. level(f) = 1, by Claim 11 and code.

33. core(f) = c, by Claim 12 and code.

34. No FIND message is headed toward p, by Claim 13 and code.

35. No CONNECT is in queue((t,r)), by Claim 24 and code.

36. There is no unknown link of p (in s') if and only if testlink(p) = nil (in s), by

Claim 10 and code.
37. There is no unknown link of p (in s') if and only if p testset(f) (in s), by

Claims 34, 35 and 36.

38. If ISI > 0 (in s') then a FIND message is in subtree(f), by Claim 5 and code.

39. If ISI = 0 and there is no unknown link of p (in s'), then p # mw-root(f) (in s),

by Claim 7 and code.

40. If ISI = 0 and there is no unknown link of p (in 9'), then either a REPORT

message is headed toward mw-root(f), or there is no external link of f (in 3), by

Claims 28 and 39 and code.

41. If there is an unknown link of p (in s'), then nstatus(p) = find (in s), by code.
42. minlink(f) = nil, by Claims 38, 40 and 41.

The changes (or lack of changes) to the remaining derived variables are obvious.

The effects of SendTest(p) are mirrored in STAR(S) by Claims 11, 12, and 37

for the changes, and Claims 32, 33, 3 and 42 for the lack of changes. If there is

an unknown link of p in .s', then the effects of ReceiveFind((q,p)) are mirrored in

SDC(S) by Claims 5, 6, 36 and 37 for changes, and Claims 3, 11, 12, 32, 33, 37 and
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42 for lack of changes. If there is no unknown link of p in s', then the effects of
ReceiveFind((q, p)) followed by TestNode(p) are mirrored in SDC(S) by Claims 5, 6,

36 and 37 for changes, and Claims 3, 11, 12, 32, 33 and 42 for lack of changes. The V

effects of ReceiveNotify((q,p), l,c) are mirrored in SNOT(S) by Claims 3, 4 and 42.

SCON(S') = SCON(S) by Claims 3, 11, 12, 32, 33, and 42.

Case 2: st 54 find.

ANOT(s',7r) = ReceiveNotify((q,p), l,c). .A,(s', 7r) is empty for all other x.

Claims about s':

1. INITIATE(l,c,found) is at the head of queuep((q,p)), by precondition.
2. (p,q) E subtree(f), by Claim 1 and NOT-H(e).

3. nlevel(p) < 1, by Claim 1 and NOT-H(a).

4. nlevel(p) < level(f), by Claims 1, 2 and 3.

5. p 54 minnode(f), by Claims 1 and 2 and NOT-I.

6. If lstatus((p,r)) = branch, then (p,r) E subtree(f), for all r : q, by Claim 5 and
TAR-A(a).
7. If (p, r) E subtree(f), then Istatus((p, r)) = branch, for all r 3 q, by TAR-A(b).

8. p is not up-to-date, by Claim 4 and GHS-I.
9. nstatus(p) 5 find, by Claim 8 and DC-I(a).

10. (p,q) 5 core(f), by Claim 1 and GHS-E.
11. AfterMerge(p, q) for NOT is not enabled, by Claim 10.

By Claim 9, dcstatus(p) = unfind in both s' and s, and thus minlink(f) is
unchanged. The changes, or lack of changes, to the remaining derived variables are

obvious.

By Claims 1 and 11. ReceiveNotify((q, p), 1, c) is enabled in SNOT(S'). Its effects
are mirrored in SNOT(S) by Claims 6 and 7.

It is easy to see that S(s') = S(s) for all other x.

(3a) GHS-A: By DC-D(a), (p, q) E subtree(f). So by GHS-A(a), nstatus(p) #
sleeping in s'. Since the same is true in .,, the predicate is vacuously true.

145



Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

GHS-B: Vacuously true for a CONNECT in queuc((q,p)) by GHS-B(a) and the

fact that INITIATE is first in the queue. Vacuously true for a CON NECT in queue((p, q))

by GHS-B(b) and the presence of INITIATE in queue((q, p)). The only other situation

to consider is the addition of an INITIATE message to queue((p,r)), r j q, with

lstatus((p,r)) = branch. As shown in (b)/(c), (p,r) E subtree(f). By NOT-H(e),

either (p, q) = core(f) or p is a child of q, so (p, r) # core(f). Thus by CON-E, no

CONNECT is in queue((p, r)), or in queue((r, p)).

GHS-C: Adding a FIND message does not falsify the predicate. Suppose a TEST i

message is added to queue((p, r)). Then in s', st = find.

Case 1: (p,r) is an internal link of f. By TAR-A(b), (pr) # subtree(f). By

COM-F, (p,r) # core(f). By CON-E, no CONNECT is in queue((p,r)).

Case 2: (p, r) is an external link of f. Since there is a FIND message in subtree(f)

in s', minlink(f) = nil. By CON-D, no CONNECT is in queue((p,r)).

GHS-D: Since it is true for the INITIATE in queue((q,p)) in s', it is true for any

INITIATE added in s.

GHS-E: As shown in GHS-B, (p, r) 5 core(f).

GHS-F: By NOT-H(a), nlevel(p) increases, so the predicate is still true for any

leftover TEST messages. The predicate is true by code for the TEST message added.

GHS-G: Case 1: An ACCEPT is in queue((p, r)). By NOT-H(a), nlevel(p) in-

creases, so the predicate is still true.a--
Case 2: An ACCEPT is in queue((r,p)). By TAR-D, testlink(p) = (p, r). i3-"

GHS-H, nstatus(p) = find. But by Claim 9 (for both Case 1 and Case 2 of (3b)/(3c)).,

nstatus(p) 5 find. So there is no ACCEPT in queue((r,p)), and the predicate is

vacuously true.

GHS-H is true by code.

GHS-I: Case 1: st = find. By code nlevel(p) = 1, and by Claim 32 in Case 1 of
(3b)/(3c), I = level(f).

Case 2: st j# found. By NOT-H(a), nlevel(p) < 1. Thus nlevel(p) < level(f),

so by GHS-I, p is not up-to-date in s'. Since all inbranches remain the same in

and nstatus(p) # find in s, p is still not up-to-date.
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GHS-J: Case 1: st = find. By Claim 37 in Case 1 of (3b)/(3c), p V testset(f)
in s if and only if there is no external link of p, so the predicate is vacuously true.

Case 2: st $ find. As in GHS-I, Case 2, p is not up-to-date, so the predicate
is vacuously true.

vii) 7r is ReceiveTest((q,p),l,c). Let f = fragment(p).

Case 1: nstatus(p) = sleeping in s'.

(3b)/(3c) ATAR(S', r) = ChangeRoot(f) t 7r, where t is the same as STAR(S')

except that rootchanged(f) = true and lstatus(minlink(f)) = branch in t.

A,(s', 7r) = ChangeRoot(f) for all other x.

Claims about s':

1. TEST(l, C) is at the head of queuep((q. p)), by precondition.

2. nstatus(p) = sleeping, by assumption.

3. subtree(f) = {p}, by Claim 2 and GHS-A.
4. minlink(f) nil, by Claim 3 and definition.
5. rootchanged(f) = false, by Claim 2, GHS-A(c) and TAR-H.

6. level(f) = 0, by Claim 3 and COM-F.
7. nlevel(p) = 0, by Claims 3 and 6.

8. 1 > 1, by TAR-M.
9. 1 > nlevel(p), by Claims 7 and 8.

10. 1 > level(f), by Claims 6 and 8.
11. awake = true, by Claim 1 and GHS-A(b).

Claims about s:

12. The TEST message is requeued, by Claim 9.

13. lstatus(minlink(f)) = branch, by code.

14. CONNECT(O) is in queue(iminlink(f)), by code.

15. 7finlink(f) does not change (i.e., is still external), by Claims 13 and 14.
16. rootchanged(f) = true, by Claims 14 and 15.

ChangeRoot~f) is enabled in S(s') by Claims 11, 3 and 5 for x CON, and A

by Claims 11, 4 and 5 for all other x.

TAR: Effects of ChangeRoot(f) are mirrored in t by its definition. 7r is enabled -

in t by definition. Its effects are mirrored in STAR(S) by Claim 12.
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For all other x, the effects of ChangeRoot(f) are mirrored in S(s) by Claii.

16 for DC and NOT, and by Claim 14 for CON.

(3a) PGHS is true in s by essentially the same argument as in 7r = Start(p).

Case 2.

Case 2: nstatus(p) sleeping in s'.

(3b)/(3c) ATAR(S', 7) = r if I < nlevel(p) or nlevel(p) = level(f) in s'. and is

empty otherwise. r4.

ADC(S', 7r) = TestNode(p) if I < nlevel(p), c = nfrag(p), testlink(p) =(p q)

and lstatus((p, r)) # unknown for all r € q, in s', and is empty otherwise.

A,(s', r) is empty for all other x.

First we discuss what happens to testset(f) and minlink(f).

We show testset(f) is unchanged, except that p is removed from testset(f) if

and only if 1 < nlevel(p), c = nfrag(p), testlink(p) = (p,q), and there is no link

(p, r), r 4 q, with lstatu3((p, r)) = unknown. If testlink(p) does not change from

non-nil to nil (or vice versa), then obviously testset(f) is unchanged. The only

place testlink(p) is changed in this way is in procedure Test(p), exactly if there

are no more unknown links of p; Test(p) is executed if and only if I < nlevel(p),

c = nfrag(p). and testlink(p) = (p,q) in .'. Suppose testlink(p) is changed from

non-nil to nil. Since testlink(p) # nil in s', GHS-M implies that no FIND message is

headed toward p, and no CONNECT message is in queue((r,t)), where (r,t) = core(f)

and p C- subtree(r). Thus in s. since testlink(p) = nil, p is not in testset(f).

Now we show that minlink(f) does not change. If dcstatus(p) does not change,

and no REPORT message is added to any queue. then obviously minlink(f) does not

change. Suppose dcstatus(p) changes, and a REPORT message is added to a queue (in

procedure Report(p)). Then 1 < nlevel(p), c = nfrag(p), testlink(p) = (1),q), there

are no more unknown links of p (so testlink(p) is set to nil), and findcount(p) = 0.

Claims abou Q"'.-

1. te.4tlink(p) = (p. q). by assuniption.

148



- 4 - - .

Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

2. nstatus(p) find, by Claim 1 and GHS-H.

3. minlink(f) nil, by Claim 2.

4. If (p,r) = core(f), then a FIND message is in queue((p, r)), or dcstatus(r) = find,

or a REPORT message is in queue((r,p)), by Claim 2 and DC-J.

5. p is up-to-date, by Claim 2 and DC-I(a).

Claims about s:

6. If p 76 mw-root(f), then either there is no external link of f, or a REPORT is

headed toward mw-root(f), by Claim 5 and code.

7. If p = mv,-root(f), then either a FIND is in queue((p, r)), or dcstatus(r) = find,

or a REPORT is in queue((r, p)), where core(f) = (p, r), by Claim 4 and code.

8. minlink(f) = nil, by Claims 6 and 7.

Claims 3 and 8 give the result.

TAR: First, suppose I > nlevel(p) and nlevel(p) 7# level(f).

Claims about s':

1. 1 > nlevel(p), by assumption.

2. nleve!(p) #6 level(f), by assumption.

3. p is not up-to-date, by Claim 2 and GHS-I.

4. nstatus(p) 7 find, by Claim 3 and DC-I(a).

5. testlink(p) = nil, by Claim 4 and GHS-H.

6. There is no protocol message for (p, q), by Claim 5 and TAR-D.

7. The TEST message in queue((q,p)) is a protocol message for (q,p), by Claim 6.

8. testlink(q) = (q,p), by Claim 7 and TAR-D.

9. There is exactly one protocol message for (q,p), by Claim 8 and TAR-C(c).

10. There is only one TEST message in tarqueue((q,p)), by Claim 9.

-> Claims 6 and 10, the TEST is the only TAR message in tarqueue((q,p)).

Si .-e the TEST message is requeued in GHS, tarqueue((q,p)) is unchanged. By 2

earlier remarks about testset(f) and minlink(j), and by inspection, the other derived I-

variables (for TAR) are unchanged. Thus, STAR(s') = STAR(S),

Second, suppose I > level(p) and nlevel(p) = level(f). Then the TEST mes-

sage is requeucd in GHS and in TAR. By earlier remarks about testlink(f) and

mmnlink(f), and by inspection, S'TAR(s')7rS7'AR(S) is an execution fragment of TAR.

Third, suppose 1 < nlevel(p). Let g = fragment(q).
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Claims about s':

1. TEST(l, C) is at the head of queuep((q, p)), by precondition.

2. 1 < nlevel(p), by assumption.

3. If lstatus((q,p)) # rejected, then c = core(g) and I = level(g), by Claim 1 and

TAR-E(b).

4. If lstatus((q,p)) = rejected, then c = core(f) and 1 = level(f), by Claim 1 and

TAR-E(c).

5. c 4 nil, by Claim 1 and TAR-M.

Next we show that c = core(f) if and only if c = nfrag(p). First, suppose

c= core(f).

6. c = core(f), by assumption.

7. If lstatus((q,p)) = rejected, then nlevel(p) = level(f), by Claims 2 and 4 and

definition of level(f).

8. If lstatus((q,p)) - rejected, then core(g) = core(f), by Claims 3 and 6. S

9. If lstatus((q,p)) i rejected, then c E subtree(g) and c - subtree(f), by Claims 5,

6 and 8 and COM-F.
10. If lstatus((q,p)) - rejected, then f = g, by Claim 9 and COM-G.

11. If lstatus((q,p)) # rejected, then I = level(f), by Claims 3 and 10.

12. If lstatus((q,p)) 5 rejected, then nlevel(p) = level(f), by Claims 2 and 11 and

definition of level(f).

13. nlevel(p) = level(f), by Claims 8 and 12.

14. nfrag(p) core(f), by Claim 13 and NOT-A.

15. nfrag(p) = c, by Claims 6 and 14.

Now suppose c = nfrag(p).

16. c = nfrag(p), by assumption.

17. c E subtree(f), by Claims 5 and 16 and NOT-F.

18. If lstatus((q,p)) # rejected, then c E subtree(g), by Claims 5 and 3 and COM-F.

19. If Istatus((q,p)) # rejected, then f g, by Claims 17 and 18 and COM-G.
20. If lstatus((q,p)) # rejected, then c = core(f), by Claims 3 and 19.

21. c = core(f), by Claims 4 and 20.

7r is enabled in STAR(S') by Claim 1. We now verify that the effects are mirrored

in STAR(S). By the above argument, c # frag(p) if and only if c 5 core(f). Thus.

the body )f Receive Test for TAR is simulated correctly. Consider procedure Test(p).

If it is executed, then c nfrag(p) in s'. By Claim 21, nfrag(p) = core(f), and by
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NOT-E, nlevel(p) = level(f). Thus the TEST messages sent in procedure Test(p)
in GHS correspond to those sent in TAR. By the discussion at the beginning of

Case 2, testset(f) is updated correctly, and minlink(f) is unchanged. The changes
or lack of changes to the other derived variables are obvious.

DC: First, suppose I < nlevel(p), c = nfrag(p), testlink(p) = (p, q), and
lstatus((p, r)) 5 unknown for all r J q, in s'.

Claims about s':

1. TEST(l, c) is at the head of queuep((q, p)), by precondition.

2. 1 < nlevel(p), by assumption.

3. c = nfrag(p), by assumption.

4. testlink(p) = (p, q), by assumption.
5. lstatus((p, r)) 3( unknown, for all r 0 q, by assumption.
6. p E testset(f), by Claim 4 and TAR-C(b).

7. minlink(f) = nil, by Claim 6 and GC-C.
8. If lstatus((p,r)) = branch, then (p,r) E subtree(f), for all r 3 q, by Claim 7 and

TAR-A(a).
9. If lstatus((p,q)) = rejected, then fragment(r) = f, for all r # q, by TAR-B.
10. c = core(f), by Claims 1, 2 and 3 and the argument just given for TAR.

11. fragment(q) = f, by Claims 1 and 10 and TAR-N.
12. There is no external link of p, by Claims 8, 9, 11 and 5.
13. nstatus(p) = find, by Claim 4 and GHS-H.

TestNode(p) is enabled in SDC(S') by Claims 6, 12 and 13. Its effects are
mirrored in SDC(S) by the earlier discussion about testset(f) and minlink(f) and
by Claim 12. (The disposition of the rest of the derived variables should be obvious.)

Now suppose I > nlevel(p) or c 7z nfrag(p) or testlink(p) j4 (p, q) or there is a i
link (p,r) with Istatus((p,r)) = unknown and r : q. Then SDC(S') = SDC(S) by

inspection and earlier discussion of testset(f) and minlink(f).

NOT and CON: We want to showS(s') = S,(s) for x = NOT and CON.

The only derived variables for these two that are not obviously unchanged are
minlink(f) and rootchanged(f). (Because of the presence of the TEST message in

queue((q, p), GHS-A(b) implies that awake = true in s', so changes to nstatus(p) do
not change awake.) Since we already showed minlink(f) is unchanged, it is obvious

that rootrhangrd(f) is unchanged.
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(3a) GHS-A is vacuously true by the assumption that nstatus(p) # sleeping.

GHS-B: First we show that if the hypotheses of this predicate are false for a

link in sI, then they are still false in s. The only way they could go from false

to true is by lstatus((p,q)) going from unknown to rejected. But since 'rEsT is il

queue((q, p)) in s', by GHS-C no CONNECT is in queue((q,p)) in s', or in .;.

Now we show that the state changes do not invalidate (a) through (d) for a

link, assuming that the hypotheses are true for that link in s'.

Case A: TEST is requeued. No change affects the predicate.

Case B: ACCEPT or REJECT is added to queue((p, q)). We already showed that

no CONNECT is in queue((q, p)). Because of the TEST in queue((q, p)), the precondi-

tions of the predicate are not true for a CONNECT in queue((p, q)) in s'.

Case. C: TEST is added to some queue((p, r)). Since lsatus((p, r)) = unknown,

the preconditions are not true in s' for a CONNECT in queue((r, p)). Since the TEST

is added, testlink(p) = (p,q) in s'. By GHS-H, nstatus(p) = find in s'. So by

GHS-B(c), the preconditions are not true in s' for a CONNECT in queue((p, r)).

Case D: REPORT is added to queue(inbranch(p)). Let (p, r) = inbranch(p) in 'S'.

As in Case 3, the predicate is vacuously true for a CONNECT in queue((p, r)). As in

Case 3, nsiatus(p) = find in s', so p is up-to-date by DC-I(a). By GHS-I, nlevel(p) =

level(f). Since by DC-L, (p, r) G subiree(f), there cannot be an INITIATE(nlevel(p)+

1, *, *) message in queue((r,p)). By GHS-B(a), the preconditions are not true for a

CONNECT in queUe((r,p) ).

GHS-H: By code.

GHS-J: If p is removed from trstset(f), then as in Claim 12 of (3b)/(3c) for

DC, there is no external link of p.

GHS-C: Case 1: REJECT is added to queue((p,q)). Then I < nlevel(p), c

nfrag(p), and testlink(p) 5 (p, q)) in s'. As argued in Lemma 17, verifying (3c) of

Case 1 for 7r = ReceiveTcst, (p, q) is an internal link of f. By TAR-E(a), (p, q) ,

core(f), so by CON-E, Ito CONNECT is in queue((p, q)).

Casc 2: TEST is added to queme((p, r)). Then in s', 1 < nlevcl(p), c = nfrag(p).

tesatlink(p) = (p, q), and l,,tatvs( (p, r)) unknown.
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Case 2a: (p, r) is an internal link of f. By TAR-A(b), (p, r) subtree(f). By

COM-F, (p, r) # core(f). By CON-E, no CONNECT is in queue((p, r)).

Case 2b: (p,r) is an external link of f. By GHS-H, nstatus(p) = find. Thus

minlink(f) = nil. By CON-D, no CONNECT is in queue((p, r).

GHS-G: Suppose ACCEPT is added to queue((p, q)). Then I < nlevel(p) in s'. As

argued in Lemma 17, verifying TAR-F for 7r = ReceiveTest, I = level(fragment(q)).

By GHS-F, I < nlevel(q). So I = nlevel(q).

No changes affect the rest.

viii) 7r is ReceiveAccept((q,p)). Let f = fragment(p).

(3b)/(3c) .ATAR(S', 7r) = 7r. ADc(S', r) = TestNode(p). A,(s', 7r) is empty for

all other x.

An argument similar to that used in ir = Receive Test((q,p) , 1, c), Case 2, shows

that minlink(f) is unchanged.

TAR: Claims about s':

1. ACCEPT is at the head of queuep((q,p)), by precondition.

2. There is a protocol message for (p, q), by Claim 1.

3. testlink(p) = (p, q), by Claim 2 and TAR-D.

4. No FIND message is headed toward p, by Claim 3 and GHS-M. S

5. No CONNECT message is in queue( (r,t)), where (r,t) = core(f) andp E subtree(r),

by Claim 3 and GHS-M.

Claims about s:

6. testlink(p) = nil, by code.
7. No FIND message is headed toward p, by Claim 4.

8. No CONNECT message is in queue( (r, t)), where (r,t) = core(f) and p E subtree(r),

by Claim 5 and code.

9. p V' testset(f), by Claims 6, 7 and 8.

7r is enabled in STAR(S') by Claim 1; its effects are mirrored in STAR(S) by

Claims 6 and 9, and discussion of minlink(.f). (The disposition of the remaining

derived varial)les should he obvious.)

DC: More Claims about s': -
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10. p E testset(f), by Claim 3.

11. minlink(f) = nil, by Claim 10.

12. fragment(q) # f, by Claim 1 and TAR-F. p
13. level(f) < level(fragment(q)), by Claim 1 and TAR-F.

14. lstatus((p, q)) # branch, by Claims 11 and 12 and TAR-A(a).

15. (p, q) is the minimum-weight external link of p with Istatus unknown, by Claims

3 and 14 and TAR-C(d).

16. If lstatus((p, r)) = rejected, then (p, r) is not external, for all r, by TAR-B.

17. If lstatus((p, r)) = branch, then (p, r) is not external, for all r, by Claim 11 and

TAR-A(a).

18. If (p, r) is external, then lstatus((p, r)) = unknown, for all r, by Claims 16 and

17. S
19. (p, q) is the minimum-weight external link of p, by Claims 15 and 18.

20. nstatus(p) = find, by Claim 3 and GHS-H.

TestNode(p) is enabled in SDC(S') by Claims 10, 19 and 13, and 20. Its effects

are mirrored in SDC(S) by Claims 9, 19 and 6.

NOT and CON: It is easy to verify that S,(s') = S,(-;) for x = NOT and

CON.

(3a) GHS-A. By Claim 20, vacuously true in s.

GHS-B: Suppose a REPORT message is added to queue((p, r)) in s. Let (p, r) =

inbranch(p). By Claim 20 and DC-I(a), p is up-to-date in s'. By GHS-I, nlevel(p) =

level(f). By DC-L, (p, r) E subtree(f), so no INITIATE(nlevel(p) + 1, *, *) can be in

queue((p, r)) or queue((r,p)). By GHS-B(a), the preconditions for a CONNECT in

queue((p, r)) or queue((r,p)) are not true in s', or in s.

GHS-H: By code, testlin'(p) = nil.

GHS-J: By Claim 19 and GHS-G.
4

No changes affect the rest.

ix) 7r is ReceiveReject((q,p)). Let f fragment(p). ,

(3b)/(3c) ATAR(S',r) 7r.
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ADC(S',7r) = TestNode(p) if there is no r # q such that lstatus((p,r)) = un-

known in s, and is empty otherwise.

A4(s', 7r) is empty for all other x.

An argument similar to that in 7r = Receive Test((q,p), l, c), Case 2, shows that

minlink(f) is unchanged.

TAR: Claims about s':

1. REJECT is at the head of queuep((q,p)), by precondition.

2. There is a protocol message for (p, q), by Claim 1.

3. testlink(p) = (p, q), by Claim 2 and TAR-D.

4. No FIND message is headed toward p, by Claim 3 and GHS-M.

5. No CONNECT message is in queue((r, t)), where (r, t) = core(f) and p E subtree(r),
by Claim 3 and GHS-M.

6. nstatus(p) = find, by Claim 3 and GHS-H.

7. nlevel(p) = level(f), by Claim 6, DC-I(a) and GHS-I.

8. nfrag(p) = core(f), by Claim 7 and NOT-A.

Claims about s:

9. If there is no link (p, r) with lstatus((p, r)) = unknown (in s'), then testlink(p) =

nil (in s), by code.

10. No FIND message is headed toward p, by Claim 4.

11. No CONNECT message is in queue((r, t)), by Claim 5.
12. If there is no link (p, r) with lstatus( (p, r)) = unknown (in s'), then p V testset(f)

(in s), by Claims 9, 10 and 11.

7r is enabled in STAR(S') by Claim 1. Its effects are mirrored in STAR(S) by

Claims 9, 12, 7 and 8, and earlier discussion of minlink(f).

DC: If there is a link (p,r) such that lstatus((p,r)) = unknown and r k q,

then it is easy to check that SDC(S') = SDC(S). Suppose there is no unknown link

(other than (p,q)).

More claims about s': ,j'

13. Istatus((p,r)) : unknown, for all r : q, by assumption.
14. minlink(f) = nil, by Claim 6.

15. If lstatus((p, r)) = branch, then (p, r) E subtree(f), for all r q, by Claim 14

and TAR-A(a).
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16. If lstatus((p, r)) = rejected, then fragmenar) = f, for all r : q, by TAR-B.
17. fragment(q) = f, by Claim 1 and TAR-G.

18. There are no external links of p, by Claims 13, 15, 16 and 17.

19. p E testset(f), by Claim 3 and TAR-C(b).

TestNode(p) is enabled in $DC(s') by Claims 19, 18 and 6. Its effects are

mirrored in SDC(s) by Claims 9 and 12.

NOT and CON: It is easy to show that S(s') = Si(s) for x = NOT and

CON.

(3a) GHS-A: Vacuously true by Claim 6.

GHS-B: Either a TEST or a REPORT message is added. The argument is very

similar to that in 7r = Receive Test((q,p), 1, c), Case 2 of (a).

GHS-C: Only affected if a TEST is added. The argument is very similar to that
in 7r = Receive Test((q,p),l,c), Case 2 of (a).

GHS-H: The argument is very similar to that in 7r = ReceiveTest((q,p), l,c),

Case 2 of (a).

GHS-I: Suppose p is removed from testset(f). By Claim 12, this only happens
when there are no more unknown links. By Claim 18, p has no external links if

there are no more unknown links.

No changes affect the rest.

x) 7r is ReceiveReport((q,p),w). Let f = fragment(p).

(3b)/(3c) Case 1: (p,q) = core(f), nstatus(p) : find and w > bestwt(p) in

s'. This case is divided into two subcases; first we prove some claims true in both

subcases. Let (r,t) be the minimum-weight external link of f in s'. (Below, we

show it exists.)

Claims about s':

1. REPORT(W) is at the head of queue((q,p)), by assumption.

2. (p, q) = core(f), by assumption.

3. nstatus(p) 5 find, by assumption.
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4. w > bestwt(p), by assumption.

5. ReceiveReport((q,p), w) is enabled in SDC(s'), by Claim 1.

6. ComputeMin(f) (for GC) is enabled in S 4(SDc(s')), by Claims 2, 3, 4 and 5 and ,

argument in proof of Lemma 19, Case 1 of verifying (3c) for ir = ReceiveReport.

7. minlink(f) = nil, by Claim 6.

8. accmin(f) nil, by Claim 6.

9. testset(f) = 0, by Claim 6.

10. ComputeMin(f) (for COM) is enabled in S 2(S 4 (SDC(S'))), by Claim 6 and

argument in proof of Lemma 15, verifying (3c) for 7r = ComputeM in.

11. level(f) level(fragment(t)), by Claim 10.

12. accmin(f) = (r,t), by Claims 8 and 9 and GC-A. p

13. r is up-to-date, by Claim 9, DC-N, and choice of (r,t).

14. nlevel(r) level(f), by Claim 13 and GHS-I.

15. nlevel(f) < nlevel(t), by Claims 9 and 13 and GHS-J.

16. No CONNECT message is in either queue of core(f), by Claim 9.

17. No CONNECT message is in any internal queue of f, by Claim 16 and CON-E.

18. inbranch(p) = (p, q), by Claims 1 and 2 and DC-A(a).

19. p is up-to-date, by Claims 2, 9 and 18.

20. findcount(p) = 0, by Claim 3 and DC-H(b).

21. All children of p are completed, by Claims 19 and 20 and DC-K(a).

22. r E subtree(p), by Claims 1, 2, 3 and 4 and DC-P(b).

23. Following bestlinks from p leads along edges of subtree(f) to (r, t), by Claims 9,

19, 21 and 22, choice of (r, t), and DC-K(b) and (c).

The following remarks apply to both Subcase la and Subcase 1b: Compute-

Min(f) is enabled in S,(s') by Claims 7, 8 and 9 for x = TAR; by Claims 7, 14 and

15 (and definition of (r,t)) for x = NOT; and by Claims 7, 11 and 17 for x = CON.

7 is obviously enabled in SDC(S').

Subcase la: lstatus(bestlink(p)) branch. ADC(S', w) =r. Ax(s',i)-

ComputeMin(f) for all other x.

More Claims about s':

24. Istatus(bestlink(p)) = branch, by assumption.

25. bestlink(p) e subtree(f), by Claims 7 and 24 and TAR-A(a).

26. p j r = mw-minnode(f), by Claims 23 and 25.

Claim. about s:
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

27. The effects of r are reflected in SDC(S), by code.
28. The effects of ComputeMin(f) are reflected in S4(SDC(s)), by Claim 27 and
argument in proof of Lemma 19, Case 1 of verifying (3c) for 7r = ReceiveReport.

29. minlink(f) = (r,t), by Claims 28 and 12.

30. Following bestlinks from p leads to (r, t), by Claim 23.

31. tominlink(p) = bestlink(p), by Claims 30 and 24.
32. p # minnode(f), by Claims 29 and 24.
33. p = root(f), by Claims 2, 22 and 29.

By Claims 3, 4 and 17, procedure ChangeRoot(p) is executed in GHS. The
effects of ComputeMin(f) are reflected in Si(s) by Claims 29 and 12 for x = TAR;

by Claim 29 and choice of (r,t) for x = NOT; and by Claims 29, 31, 32, 33 and

choice of (r, t) for x = CON. The effects of ir are reflected in SDC(S) by Claim 27.

Subcase 1b: lstatus(bestlink(p)) 5 branch.

ADC(S', 7r) = 7r tDC ChangeRoot(f), where tDC is the result of applying 7r to

SDc(s 1).

AcoN(s',r) = ComputeMin(f).

For all other x, A,(s', 7r) = ComputeMin(f) t. ChangeRoot(f), where tx is the
result of applying ComputeMin(f) to Sx(s').

More claims about s':

34. lstatus(bestlink(p)) # branch.

35. bestlink(p) = (r, t), by Claims 23, 34 and 7 and TAR-A(b).

36. p = r = mw-minnodej), by Claim 35.
37. nstatus(q) : sleeping, by Claim 1 and GHS-A.

38. awake = true, by Claim 37.
39. rootchanged(f) = false, by Claim 7 and COM-B.

Claims about t,, x € CON:

40. If x = TAR, then minlink(f) (r,t), by Claim 12.

41. If x = NOT, then minlink(f) = (r,t), by choice of (r,t).
42. If x = DC, then minlink(f) = (r, t), by Claims 6 and 12 and argument in proof

of Lemma 15, verifying (3c) for 7r = ComputeMin.
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43. awake = true, by Claim 38.

44. rootchanged(f) = false, by Claim 39.

The effects of 7r are mirrored in tDC and of ComputeMin(f) in tTAR and tNOT

by definition. ChangeRoot(f) is enabled in t,, by Claims 40, 43 and 44 for x = TAR;

by Claims 41, 43 and 44 for x = NOT; and by Claims 42, 43 and 44 for x = DC.

Claims about s:

45. minlink(f) = (r, t), by argument in proof of Lemma 19. Case I of verifying (3c)

for ir = ReceiveReport.

46. Istatus(bestlink(p)) = branch, by code. 6
47. Istatus(minlink(p)) = branch, by Claims 35 and 45.
48. CONNECT is added to queue(bestlink(p)), by code.

49. rootchanged(f) = true, by Claims 45 and 48.

The effects of ChangeRoot(f) are mirrored in Si(s) by Claims 47 and 49 for
x = TAR; by Claim 49 for x = DC and NOT. The effects of ComputeMin(f) are
mirrored in SCO N(S) by Claims 36, 14 and 45.

Case 2: (p,q) 54 core(f) or nstatus(p) = find or w < bestwt(p) in s'.

ADC(S', lr) = ir. Ax(s', ir) is empty for all other x.

Subcase 2a: (p,q) : core(f) in s'. Suppose (p,q) = inbranch(p) in s'. By DC-
B(b), dcstatus(p) = unfind. Thus, the only effect is to remove the REPORT message.

Thus SDc(s')7rSDc(s) is an execution fragment of DC. As proved in Lemma 19,
Case 2a of verifying (3b) for 7r = ReceiveReport, minlink(f) is unchanged. Thus
S.(s') = Si(s) for all x # DC. a

Now suppose (p, q) : inbranch(p).

Claims about s':

1. REPORT is at head of queue((q,p)), by precondition.

2. (p,q) 5 core(f), by assumption.
3. (p, q) 5 inbranch(p), by assumption.
-1. destat.us(p) = find, by Claims 1, 2 and 3 and DC-A(g).

5. p is up-to-date, by Claim 4 and DC-I(a).
6. q is a child of p, by Claims 3 and 5.
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

7. findcount(p) > 0, by Claims 1, 5 and 6 and DC-K(a).

8. No FIND message is headed toward p, by Claim 7 and GHS-M.

9. No CONNECT is in queue((r,t)), where (r,t) = core(f) and p E subtrce(r), by

Claim 7 and GHS-M.

10. p E testset(f) if and only if testlink(p) 9 nil, by Claims 8 and 9.

Obviously, 7r is enabled in SDC(S.). By Claim 10 and inspection, the effects

of 7r are mirrored in SDC(S). Since the proof of Lemma 19, Case 2a of verifying

(3b) for 7r = ReceiveReport, shows minlink(f) is unchanged, S,(s') = S,(s) for all

x#DC.

Subcase 2b: (p,q) = core(f) and nstatus(p) = find in s'. Since REPORT(u,) is

at the head of queue((q,p)), DC-A(a) implies that inbranch(p) = (p, q). Thus, the

only change is that the REPORT message is requeued. Obviously SDC(S)rSDC(S)

is an execution fragment of DC, and S,,(s') = Si(s) for all x : DC.

Subease 2c: (p,q) = core(f), nstatus(p) = find and w <_ bestwt(p) in s'. As

in Subcase 2b, inbranch(p) = (p, q). The only change is that the REPORT message

is removed. Thus SDC(s')IrSDC(S) is an execution fragment of DC. As proved in

Lemma 19, Case 2c of verifying (3b) for 7r = ReceiveReport, minlink(f) is unchanged

in s. Thus S.(s') = 8.,(s) for all x 5 DC.

(3a) Case 1: inbranch(p) # (p, q).

GHS-A: By DC-A(a), (p,q) J core(f). By DC-A(g), dcstatus(p) = find. The

predicate is vacuously true.

GHS-B: Only the addition of a REPORT message affects this predicate. The

argument is very similar to that in 7r = Receive Test((q,p), l, c), Case 2, of (3a).

GHS-H: By code (in procedure Report(p)).

No change affects the rest.

Case 2: inbranch(p) = (p, q). If nstatus(p) find or w < bestwt(p), then no

change affects any predicate. Suppose nstatus(p) # find and w > bestwt(p).
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GHS-A: By DC-B(a), subtree(p) # {p}. By GHS-A(a), nstatus(p) -/ sleeping,

so the predicate is vacuously true.

GHS-B: Let (p, r) = bestlink(p) in s'. If lstatus((p, r)) = branch, then no change

affects this predicate. Suppose lstatus((p, r)) # branch. As shown in (3b)/(3c),

Claim 35 of Case 1b, bestlink(p) is the minimum-weight external link of f. Thus

Istatus((r,p)) # rejected by TAR-B, and if lstatus((r,p)) = branch, then there is a

CONNECT in queue((r, p)). So the predicate is vacuously true for the CONNECT added

to queue((p,r)). If there is a leftover CONNECT in queue((r,p)), then the predicate

is vacuously true because of the new CONNECT in queue((p, r)).

GHS-C: Let (p,r) = bestlink(p) in .s'. Since bestlink(p) is external (as shown

in (3b)/(3c)), no REJECT is in queue((p, r)) by TAR-G. Also since it is external,

lstatus((p, r}) rejected by TAR-B. Suppose a TEST is in queue((p, r)). By TAR-

D, testlink(p) = (p, r), and by GHS-H, nstatus(p) = find, which contradicts the

assumption for this case. Also since the link is external, no FIND is in queue((p, r))

by DC-D(a).

No change affects the rest.

xi) 7r is ReceiveChangeRoot((q,p)).

(3b)/(3c) There are two cases. First we prove some facts true in both cases.

Claims about s':

1. CHANGEROOT is at the head of queue((q,p)), by precondition. 1%

2. minlinktf) 54 nil, by Claim 1 and CON-C.
3. rootchanged(f) = false, by Claim 1 and CON-C.

4. p E subtree(q), by Claim 1 and CON-C.
5. minnode(f) E subtree(p), by Claim 1 and CON-C.

6. nlevel(minnode(f)) = level(f), by NOT-D.

7. testset(f) = 0, by Claim 2 and GC-C

8. minlink(f) is the minimum-weight external link of f, by Claim 2 and COM-A.
9. minnode(f) is up-to-date, by Claims 7 and 8 and DC-N.

10. p is up-to-date, by Claims 5, 7 and 9. N

11. No REPORT message is headed toward mw-root(f), by Claim 2. "

12. No REPORT message is headed towardl p, by Claims 4 and 11. I1

13. dcstatus(p) = unfind, by Claims 7 and 12 and DC-I(b). k

14. findcount(p) = 0, by Claim 13 and DC-H(b).
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

15. All children of p are completed, by Claims 10 and 14 and DC-K(a).

16. Following bestlinks from p leads along edges in subtree(f) to the ininiiiiimi-weight

external link of subtree(p), by Claims 7, 10 and 15 and DC-K(b) and (c).

Case 1: lstatus(bestlink(p)) $ branch in s'.

ACON(S', 7r) = 7r. A 1 (s', 7r) ChangeRoot(f) for all other x.

More claims about s':

17. Istatus(bestlink(p)) # branch, by assumption.

18. bestlink(p) is not in subtree(f), by Claim 17 and TAR-A(b).

19. bestlink(p) = minlink(f), by Claims 5, 8, 16 and 18.

20. nstatus(q) # sleeping, by Claim 1 and GHS-A(b).

21. awake = true, by Claim 20.

Claims about s:

22. lstatus(bestlink(p)) = branch, by code.

23. CONNECT is in queue(bestlink(p)), by code.

24. MSF does not change, Claims 22 and 23. *1

25. bestlink(p) = minlink(f), by Claims 19 and 24.

26. rootchanged(f) true, by Claims 23 and 25.

ChangeRoot(f) is enabled in S 1 (s') by Claims 2, 3 and 21, for all x 7 CON.

The effects of ChangeRoot(f) are mirrored in S(s) by Claims 22, 25 and 26 for

x = TAR; and by Claim 26 for x = DC and NOT. 7r is enabled in SCON(s') by

Claim 1; its effects are mirrored in SCN(s) by Claims 6 and 19.

Case 2: lstatus(bestlink(p)) = branch in .'.

ACON(s', 7) = 7r. Ax(s'. 7r) is empty for all other x.

More Claims about s':

27. lstatus(bestlink(p)) = branch, by assumption. ",

28. Istahis( mimlink(f) ) 3 branch, by Claim 3 and TAR H.

29. bestlink(p) is in qubtrec(f), by Claims 27 and 28 and TAR-A(a). %
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30. p # minnode(f), by Claims 16 and 29.
31. bestlink(p) = tominlink(f), by Claims 8, 16 and 29.
32. nlevel(p) = level(f), by Claim 10 and GHS-I.

Obviously, all derived (and non-derived) variables are unchanged, except
cqueue,. Thus, S,(s') = S(s) for all x J COX. 7r is enabled in ScoN(,') by
Claim 1; its effects are mirrored in S,(s) by Claims 30, 31 and 32.

(3a) GHS-A: By CON-C, (p,q) E subtree(f). By GHS-A(a), nstatus(p) 74

sleeping in s', so the predicate is vacuously true in s.

GHS-B: Essentially the same argument as in 7r = ReceiveReport( (q, p), w)., Case
2 of (3a).

GHS-C: Essentially the same argument as in 7r = ReceiveReport((q, p), w), Case
2 of (3a).

No change affects the rest. 0

Let PGHS = Axei( P o S) A PGHS.

Corollary 26: .P' is true in every reachable state of GHS.

Proof: By Lemmas 1 and 25. 0
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4.3 Liveness

We show a path in the lattice along which liveness properties are preserved.

The path is HI, COM, GC, TAR, GHS. In showing the edge from GHS to TAR,

it is useful to know some liveness relationships between GC and DC, and between

COM and CON.

The reason for considering liveness relationships in other parts of the lattice is

to take advantage of the more abstract forms of the algorithm. For instance, the

essence of showing that the GHS algorithm will take steps leading to the simulation

of ComputeMin(f) in TAR is the same as showing that DC takes steps leading to

the simulation of ComputeMin(f) in GC. (These steps are the convergecast of

REPORT messages back to the core.) DC is not cluttered with variables and actions

that are not relevant to this argument, unlike GHS. Thus, we make the argument

for DC to GC, and then apply Lemma 7 for the GHS to TAR situation.

For the same reason, we show that the progression of CHANGEROOT messages in

CON leads to the simulation of ChangeRoot(f) in COM, and that the movement

Of CONNECT messages over links in CON leads to Absorb and Merge in COM, and

then apply Lemma 7.

4.3.1 COM is Equitable for HI

The main idea here is to show that as long as there exist two distinct subgraphs,
progress is made; the heart of the argument is showing that some fragment at the

lowest level can always take a step. This requires a global argument that considers

all the fragments.

Lemma 27: COM is equitable for HI via M 1 .

Proof: By Corollary 14, (P 1 o S1) A POOM is true in every reachable state of

PCOM. Thus, in the sequel we will use the HI and COM predicates. IL

For each locally-controlled action V of HI, we must show that COM is equi-
table for p via M 1 . .

i) , is Start(p) or Notln'rree(l). Since p is enabled in S(s) if and only

if it is also enabled in s, and since AI(s, p) includes p, for any state s, Lemma 5

shows that COM is equitable for p via MI.

ii) V is Combine(F,F',e). We show COM is progressive for p via M" I
Lemma 6 implies COM1 is equitable for p via MI.
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Section 4.3.1: COM is Equitable for HI

Let T. be the set of all pairs (s, ¢) of reachable states s of COM and inter-

nal actions 0 of COM enabled in s. For reachable state s, let v.(s) = (x,y, z),
where x is the number of fragments in s, y is the number of fragments f with

rootchanged(f) = false in s, and z is the number of fragments f with minlink(f)

= nil in s. (Two triples are compared lexicographically.)

(1) Let s be a reachable state of COM1 in E.0. We now demonstrate that some

action 0 is enabled in s with (s, ¢) E IP .

Claims:

1. awake = true in SI(s), by precondition.

2. F # F' in SI(s), by precondition.
3. awake = true in s, by Claim 1 and definition of S1 .

4. There exist f and g in fragments such that subtree(f) = F and subtree(g) = F'

in s, by Claim 2 and definition of Si.

5. f : g in s, by Claims 2 and 4.

Let I = min{level(f') : f' E fragments} in s. (By Claim 4, fragments is not

empty in s, so I is defined.) Let L = {f' E fragments : level(f') = I}.

Case 1: There exisfs f' E L with minlink(f') = nil. Let tk = ComputeMin(f').
We now show 4 is enabled in s. By Claim 5, the minimum-weight external link (p, q)

of f' exists. By choice of 1, level(f') < level(fragment(q)). Obviously (s, 0) E '.

Case 2: For all f' E L, minlink(f') # nil.

Case 2.1: There exists P e L with rootchanged(f') = false. Let 4'
ChangeRoot(f'). 4' is enabled in s by Claim 3 and the assumption for Case 2.
Obviously (s,?P) G T.

Case 2.2: For all f' E L, rootchanged(f') = true.

Case 2.2.1: There exists fragment g' E L with level(f') > 1, where f'-
fragment(tarqet(minlink(g'))). (By COM-G, f' is uniquely defined.) Let 4' =

Absorb(f', g'). Obviously ¢ is enabled in s, and (s, V) G T .

Case 2.2.2: There is no fragment g' E L such that level(f') > 1, where .f' =
fragment(taarqet(minlink(g'))). Pick any fragment .f, such that level(ft) 1. For
I > 1, (cfine f, to be fragment(tarqet( minlin:(fi_ I))).

More claims abo,,L q:'
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6. fi is uniquely defined, for all i > 1. Proof: If/ = 1, by definition. Suppose it, is
true for i - 1 > 1. Then it is true for i by COM-G, since minlink(fi) is well-defined

and non-nil.

7. minlink(fi) is the minimum-weight external link of fi, for all i > 1, by COM-A.

8. fi - fi-a, for all i > 1, by Claims 6 and 7 and definition of fi.

9. If mninedge(fi) # minedge(fi-1) for some i > 1, then fi+1 is not among f,.I fi,

by Claims 7 and 8, and since the edge-weights are totally ordered.

10. There are only a finite number of fragments, by COM-D and the fact that V(G)

is finite.

By Claims 9 and 10, there is an i > 1 such that minedge(fi) = minedge(fi- 1 ).

Let V) = Merge(fi,fii1). Obviously V) is enabled in s, and (s, 0) E ,.

(2) Consider a step (s', 7r, s) of COM, where s' is reachable and in E,, (s', 7r)

X., and s E EE .-

(a) vp(.s) <: v,(s'), because there is no action of COM that increases the

number of fragments; only a Merge action increases the number of fragments with

minlink equal to nil or rootchanged equal to false, and it simultaneously causes the

number of fragments to decrease.

(b) Suppose (s',ir) E %P, . Then v,(s) < v,(s'), since Absorb and Merge de-

crease the number of fragments, ComputeMin maintains the number of fragments

and the number of fragments with rootchanged = false and decreases the number
with minlink = nil, and ChangeRoot maintains the number of fragments and de- A

creases the number with rootchanged = false.

(c) Suppose (s', 7r) V TV, 0 is enabled in s', and (s',c') C 'I . Then V, is
still enabled in s, since the only possible values of 7r are Start(p), InTree(l) and

NotInTree(l), none of which disables V). By definition, (s, 4) E kC0.

iii) V is InTree((p,q)). We show COM is progressive for V via MI; Lemnia

6 implies that COM is equitable for V via M 1

Let qjy be the set of all pairs (s, i/,) of ra(chable states ; of CO.11 and actions

V, of CO.t1 enabled in .s such that ', is either an internal action or is (P.

For reachable state s, let ,Fs) . , )(s).
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Section 4.3.2: GC is Equitable for COM

(1) Let s be a reachable state of COM in E.. We now demonstrate that some

action ' is enabled ill s with (s, V) E T.-

If (p,q) E F for some F in Si(s), then (p,q) E subtree(fragment(p)) in s. Let

4 = In Tree((p, q)).

Suppose (p, q) is the minimum-weight external link of some F in S (s).
Then there is more than one fragment. Essentially the same argument as in
'p = Combine(F,F,e) shows that some Absorb(f',g'), or Merge(ff i+), or

ChangeRoot(f'), or ComputeMin(f') is enabled in s.

(2) As in 'p = Combine(F, F', e), after noting that 7r 9 InTree((p, q)). 0

4.3.2 GC is Equitable for COM

The main part of the proof is showing that eventually every node is removed

from testset(f), so that eventually ComputeMin(f) can occur. As in Section 4.3.1,
a global argument is required, because a node might have to wait for many other

fragments to merge or absorb until the level of the fragment at the other end of p's

local minimum-weight external link is high enough.

Lemma 28: GC is equitable for COM via M 2.

Proof: By Corollary 16, (PCoM 0S2) A PGc is true in every reachable state of GC.

Thus, in the sequel we will use the HI, COM, and GC predicates.

For each locally-controlled action V of COM, we must show that GC is equi-

table for V lia M 2 .

i) 'p is not ComputeMin(f) for any f. Since 'p is enabled in s if and only if

'p is enabled in S2(s), and since A2(s, W) includes (p, for all s, Lemma 5 shows that S
GC is equitable for y via Ml 2.

ii) V is ComputeMin(f). We show GC is progressive for w via M,2 ; Lemma

6 implies that GC is equitable for 'p via Ml 2 .

Let 4/,, be the set of all pairs (s, 7r) of reachable states s of GC and internal

actions 7r of GC enabled in s. For reachable state s, let v,(s) be a quadruple with ._

the following components: .A

1. the number of fragments; 0.

2. the number of fragments with rootchanged false;
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3. the number of fragments with minlink = nil; and

4. the sum of the number of nodes in each fragment's testset.

(1) Let s be a reachable state of GC in E1P. So ComputeMin(f) is enabled in
S 2(s). We now show that some 0 is enabled in s with (s, 0) E T

Let g be the directed graph defined as follows. There is one vertex of g for

each element of fragments in s. We now specify the directed edges of g. Let v and
w be two vertices of Q, corresponding to fragments f' and g'. There is a directed
edge from v to w in ! if and only if there is a node p in testset(f') whose minimum-
weight external link is (p, q), fragment(q) = g', and level(f') > level(g'). We will call

fragment f' a sink if its corresponding vertex in 9 is a sink. (It should be obvious

that there is at least one sink.)

Case 1: There is a sink f' such that testset(f') : 0. Let ¢ = TestNode(p) for
sone p E iestsei(f'). Since f' is a sink, ¢ is enabled in s. Obviously (s, 0) E %. _

Case 2: For all sinks f', testset(f') 0.

Case 2.1: There is a sink f' such that minlink(f') = nil. Let -

ComputeMin(f'). Since ComputeMin(f) is enabled in S2 (s), there are at least
two fragments, so there is an external link of f'. By GC-B, accmin(f') J nil. Thus

is enabled in s. Obviously (s, V)) E T.

Case 2.2: For all sinks f', minlink(f') 5 nil.

Case 2.2.1: There is a sink f' such that rootchangcd(f') = false. Let -,=

ChangeRoot(f'). Since ComputeMiu(f) is enabled in S 2(.), minlink(f) Z nil. By

COM-C then, awake = true. Thus V, is enabled in s. Obviously (s, ') E %PW.

Case 2.2.2: For all sinks f', rootchanged(f')= true. By COM-A, the following
two cases are exhaustive.

Case 2.2.2.1: There is a sink f' such that level(g') > level(f'), where g' =

fragment (target(minlink(f'))). Let 0 = Absorb(g',f'). Since f' is a sink, ', is
enabled in s. Obviously (s, v) c T,.,

Case 2.2.2.2: For all sinks f', level(g') - level(f'), where g' = fragment(target
(minlink(f'))). Let m iin{level(f') : f' is a sink}. Let f' be a sink with
level(f') = n, and let g' = frayment(targeit( 7ninlink(f'))). If g' is not a sink, then

from the vertex in G corresponding to g' a sink is reachable (along the directed edges)
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Section 4.3.3: TAR is Equitable for GC

whose corresponding fragment is a sink with level less than m, contradicting our

choice of m. Thus g' is a sink. Since the edge weights are totally ordered, by COM-

A there are two sinks f' and g' at level in such that rninedge(f') = minedge(g').

Let ¢ = Merge(f,g'). Obviously 0 is enabled in .s, and (s, ) E T.

(2) Consider step (s', ir, s) of GC, where s' is reachable and in E,,, (s', 7r) V XW,

and s G E,.

(a) Obviously the external actions of GC do not change v.. This fact, together

with (b) below, shows that v,(s) vV(s'). S

(b) Suppose (s', 7r) E Tv. If 7r = TestNode(p), then component 4 of v. decreases

and the rest stay the same. If r = ComputeMin(f'), then component 3 of z,

decreases and the rest stay the same. If ir = ChangeRooi(f'), then component 2 of

v. decreases and the rest stay the same. If 7r = Merge(f', g') or Absorb(f', g'), then

component 1 of v. decreases.

(c) Suppose (s', 7r) V T'I,, ?P is enabled in s', and (s', 0) E T.. Since the only

choice for r is an external action of GC, obviously 0 is enabled in s and (s, TV) 'I,. 9

4.3.3 TAR is Equitable for GC

The substantial argument here is that a node p's local test-accept-reject proto-

col eventually finishes, thus simulating TestNode(p) in GC. Again, we need a global

argument: to show that the recipient of p' TEST message eventually responds to it,
we must show that the level of the recipient's fragment eventually is large enough.

This proof is where the state component of the set ' in the definition of progressive S

is used. The receipt of a TEST message will generally make progress, but if it is

requeued and the state is unchanged, no function on states can decrease; thus. we

exclude such a state-action pair from T.

Lemma 29: TAR is equitable for GC via M 3.

Proof: By Corollary 18, (P COS3)APTAR is true in every reachable state of TAR.

Thus, in the sequel we will use the HI, COM, GC, and TAR predicates.

For each locally-controlled action 'p of "C, we must show that TAR is equitable
for p via Mk43.
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Section 4.3.3: TAR is Equitable for GC

i) V is not TestNode(p) for any p, or InTree(l) or NotInTree(1) for

any 1. Since p is enabled in s if and only if W is enabled in S 3 (s), and since A 3 (S, ')

includes Wp, for all s, Lemma 5 implies that TAR is equitable for 'p via M 3 .

ii) 'p is TestNode(p). We show TAR is progressive for V via M 3 ; Lemma 6

implies that TAR is equitable for 'p via M 3 . In the worst case, we have to wait for
the levels to have the correct relationship. This requires a "global" argument.

Let P, be the set of all pairs (s, 7r) of reachable states s of TAR and internal

actions ir of TAR enabled in s, such that if 7r = ReceiveTest((q, r), l,c), then in s
either level(fragment(r)) > 1, or there is more than one message in tarqueuer((q, r)).

For reachable state s, let v,(s) be a 10-tuple of:

1. the number of fragments in s,

2. the number of fragments f with rootchanged(f) = false in s,

3. the number of fragmentF f with minlink(f) = nil in s,
4. the number of nodes q such that q E testset(fragment(q)) in s,

5. the number of links I such that either Istatus(l) = unknown, or else lstatus(l)

branch and there is a protocol message for 1, in s,

6. the number of links I such that no ACCEPT or REJECT message is in tarqueue(l)

in s,
7. the number of links I such that no TEST message is in tarqueue(l) in s,

8. the number of messages in tarqueueq((q, r ), for all (q,r) E L(G), in s,
9. the number of messages in tarqueueq,.((q, r)), for all (q,r) G L(G), in s,

10. the number of messages in tarqueuer((q, r)), for all (q,r) E L(G), that are

behind a TEST message in s.
(it_

(1) Let s be a reachable state of TAR in E.. We show that there exists an

action V, enabled in s such that (s, ?/') E T

Let I = min{level(f) : f E fragments}.

Case 1: All fragments f at level I have rootchanged(f) = true. Then some

Absorb(f, g) or Merge(f, g) is enabled in s, as argued in Lemma 27, Case 2.2.1 for

'p = Combine. Let /) be one of these enabled actions.

Case 2: level(f) = I and rootchanged(f) € true, for some f E fragments.

Claims about s:

1. p E tests et(fragment(q)), by precondition of 'p.
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Section 4.3.3: TAR is Equitable for GC

2. awake = true, by Claim 1 and GC-C and COM-C.

Case 2.1: minlink(f) # nil. Let ) = ChangeRoot(f). By Claim 2 and assump-

tion for Case 2.1, V' is enabled in s.

Case 2.2: minlink(f) nil.

Case 2.2.1: testset(f) = 0.

3. Either there is no external link of f, or accmin(f) j nil, by GC-B and assumption

for Case 2.2.1.

4. fragment(p) # f, by Claim 1 and assumption for Case 2.2.1.

5. accmin(f) $ nil, by Claims 3 and 4.

Let 4 = ComputeMin(f). It is enabled in s by Claim 5 and assumption for

Case 2.2.1.

Case 2.2.2: testset(f) # 0. Let q be some element of testset(f).

Case 2.2.2.1: testlink(q) = nil. Let 4 = SendTest(q). It is enabled in s by

assumptions for Case 2.2.2.1.

Case 2.2.2.2: testlink(q) 5 nil. By TAR-C(a). testlink(q) = (q,r), for some r.

There is a protocol message for (q, r), by TAR-C(c). So there is some message at the

head of at least one of the six queues comprising tarqueue((q, r)) and tarqueue((r, q)).

At least one of the following is enabled in s: Receive Test(k, ', c'), ReceiveAccept(k),

ReceiveRejeckk), ChannelSend(k,m), and ChannelRecv(k,m), where k is either

(q,') or (r,q), and m E M.

Suppose in contradiction that there is no 4 enabled in s such that (s, 4) E

T.. That is, by definition of T.', the only message in tarqueue((q, r)) (if any) is a

TEST(I', C') in tarqueuer((q, r)) with ' > level(fragment(r)); and the only message in

tarqueue((r,q)) (if any) is a TEST(I", C") in tarqueueq((r,q)) with I" > fragment(q)).

Suppose the protocol message for (q,r) is a TEST(', c') in tarqueue((q,r)),

with lstatus((q,r)) : rejected. By TAR-E(b), ' = level(fragment(q)). Since

fragment(q) = f, ' = 1 by choice of f. But ' > level(fragment(r)), by defini-

tion of T., which contradicts the definition of 1.

Suppose the protocol message for (q, 7') is a TEST(I", C") in tarqueue((r, q)), with

lstatus((r,q)) = rejected. By TAR-E(c), 1" = level(fragment(q)). But by definition 0

of %, I" > level(fragment(q)).
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(2) Let (s', 7r, s) be a step of TAR, where s' is reachable and is in E", ('s',iI) q
X,',, and s E E9 .,

(a) If (s', r) V %P,,, then ~r is either InTree(l), NotlnTree(l), or Siari(p), or

else 7r is Receive Tes 4(q, r),1, c) and in s, I > level(fragment(r)) and there is only

one message in tarqueue,((q, r)). In all cases, no component of v. is changed, so

vV,(S) = vW(s).

Part (b) below finishes the proof that v,(s) v,(s).

(b) Suppose (s', 7r) E TI',- We show v,(s) < z',,(s').

" Suppose ir = ChanrnelSend(l, in). Component 8 of v,, decreases and components

1 through 7 do not change.

" Suppose 7r = ChannelRecv(l, mn). Component 9 of v. decreases and components

1 through 8 do not change.

* Suppose 7r =Send Test(q). Let (q, r) be the minimum-weight link of q with

Istatus unknown in s'. By precondition, testlink(q) = nil in s'. By TAR-D,
there is no protocol message for (q, r) in s', so there is no TEST message in

tarqueue((q, r)) in .s'. One is added in s. Thus component 7 of v,, decreases

and components 1 through 6 do not change. If there is no link of q with lsitatus

unknown, then q is removed from tesisei(fragment(q)). Thus component 4 of

v. decreases and components 1 through 3 do not change.

" Suppose 7r = ReceiveTest((q,r),l,c) and in s' either I < Ievel(fragment(r)) or -

there is more than one message in IarqueUer((q, r)).

Case 1: 1 < level(fragment(r)) and either c i4 core(fragment(r)) or testlink(r) :A

(r ,q) in s'.

Claimns about s':

1. TEST(I, c) message is in tarqueue((q, r)), by precondition.
2. c - core (fragment(r)) or teqtli'nk(r) $ (r, q), by assumption.

3. If c :A core (fragment (r)), then lstatus((q, r)) 54 rejected, by TAR-E(c).

4. If testlink(r) # (r, q), then there is no protocol message for (r, q), by TAR-D.

5. If testlink(r) 54 (r,q), then lstats((q, r)) -A rejected, by Claim 4 and definition.
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6. The TEST(l,c) message in tarqueue((q,r)) is a protocol message for (q,r), by

Claims 2, 3 and 5.
7. testlink(q) = (q,r), by Claim 6 and TAR-D.

8. There is no ACCEPT or REJECT message in tarqueue((r, q)), by Claims 6 and 7

and TAR-C(c).

If lstatus((q, r)) is changed from unknown to rejected, then component 5 of
V. decreases and components 1 through 4 are unchanged. Otherwise, an ACCEPT

or REJECT message is added to tarqueue((r, q)) in s, causing component 6 of v. to

decrease by Claim 8, while components 1 through 5 stay the same.

Case 2: 1 < level(fragment(r)) and c = core(fragment(r)) and testlink(r) =

(r,q) in s'.

Claims about s':

1. TEST(l, c) is in tarqueue((q, r)), by precondition.

2. c = core(fragment(r)), by assumption.

3. testlink(r) = (r, q), by assumption.

Case 2.1: There is no link (r,t), t # q, with Istatus unknown in s'. Then q
is removed from tests et(fragment(q)) in s, causing component 4 of v. to decrease
while components 1 through 3 do not change.

Case 2.2: There is a link (r,t), t # q, with lstatus((r,t)) = unknown in s'.

4. lstatus((r, q)) # rejected, by Claim 3 and TAR-K.

By Claim 4, Cases 2.2.1 and 2.2.2 are exhaustive.

Case 2.2.1: Istatus((r,q)) = unknown in s'. It is changed to rejected in 8,
causing component 5 of v, to decrease and components 1 through 4 to stay the

• .

same.

Case 2.2.2: lstatus((r,q)) = branch.

Case 2.2.2.1: The TEST(l, C) message in tarqueue((q, r)) is a protocol message
for (r, q). 7%
5. The TEST(1, c) message in tarqueue((q, r)) is the only protocol message for (r, q),
by TAR-C(c).
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Section 4.3.3: TAR is Equitable for GC

Since the only protocol message for (r, q) is removed in s, component 5 of ?Y,
decreases and components 1 through 4 stay the same.

Case 2.2.2.2: The TEST(l, C) message in tarqueue((q, r)) is not a protocol mes-

sage for (r,q).

6. Istatus((q, r)) 7 rejected, by assumptions for Case 2.2.2.2.
7. There is a TEST(l', C') message in tarqueue((r, q)) and lstatus((r, q)) = unknown,

by Claims 1, 2, 3, 6 and TAR-P.

But Claim 7 contradicts the assumption for Case 2.2.2.

Case 3: 1 > level(fragment(r)) and there is more than one message in
tarqueuer((q,r)) in s'. All TEST messages in tarqueuer((q,r)) are protocol mes-
sages for the same link, either (q, r) or (r, q). Since by TAR-D and TAR-C(c) there
is never more than one protocol message for any link, this TEST(l, C) message is

the only one. The TEST(, C) message is put at the end of tarqueuer((q, r)) in s,
decreasing component 10 and not changing components 1 through 9.

" Suppose 7r = ReceiveAccept((q, r)). Since r is removed from tests et(frag-
ment(r)), component 4 of v. decreases while components 1 through 3 stay
the same.

Suppose 7r = ReceiveReject((q, r)). If there are no more unknown links, then
r is removed from tests et(fragment(r)), decreasing component 4 of v,, and not
changing components 1 through 3. Suppose there is another unknown link.

Claims about s':

1. REJECT is in tarqueue((q, r)), by precondition.

2. There is a link (r, t), t # q, with lstatus((r, t)) = unknown, by assumpticn.

3. testlink(r) = (r, q), by Claim 1 and TAR-D.
4. The REJECT in tarqueue((q, r)) is the only protocol message for (q, r), by Claim

3 and TAR-C(c).

5. lstats((r, q)) # rejected, by Claim 3 and TAR-K.

By Claim 5, Istatus((r, q)) : rejected. If lstatus((r, q)) = unknown in s', it is
changed to rejected in s. If lstatus((r,q)) = branch in s', then it stays branch in S.C
but there are no more protocol messages for (r, q) in .s, by Claim 4. Thus component
5 of v. decreases while components 1 through 4 stay the name.
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Section 4.3.3: TAR is Equitable for GC

* Suppose 7r = ComputeMin(f). Component 3 of v, decreases and components

1 and 2 are unchanged.
S

* Suppose 7r = ChangeRoot(f). Component 2 of v. decreases and component 1

is unchanged.

" Suppose 7r = Merge(f, g) or Absorb(f, g). Component 1 of v, decreases.

(c) Suppose (s', 7r) V 'I'W, i/, is enabled in s', and (s', ) E %Pw. Then

ib is still enabled in s and (s,T) E 'I', since the only possibilities are: 7r =
InTree(l), NotlnTree(l), or Start(p), or else 7r = Receive Test((q,r),1,c) and in s',
I > level(fragment(r)) and there is only one message in tarqueuer((q, r)).

iii) V is InTree((p,q)). We show TAR is progressive for p via M 3 ; Lemma
6 implies that TAR is equitable for so via M 3 . We simply show that if (p, q) .5
mirlink(f), but Istatus((p,q)) is not yet branch, then eventually ChangeRoot(f)
will occur.

Let T be all pairs (s, 4,) of reachable states s and actions 4 enabled in s such
that one of the following is true: (Let f = fragment(p) in s.)

* 4, = InTree((p,q)), or

* (p, q) = minlink(f) in s, and 4 ChangeRoot(f).

For reachable state s, let v,(s) be 1 if (p,q) = minlink(f) and ChangeRoct(f)
is enabled in s, and 0 otherwise.

(1) Let s be a reachable state of TAR in E.. We show that there exists an
action 4 enabled in s such that (s,4,) E T,,. Let f fragment(p) in s.

Claims about s:

1. awake = true, by precondition of s.o
2. (p,q) E subtree(f) or (p,q) = minlink(f), by precondition of sp.
3. answered((p,q)) = false, by precondition of o.

4. lstatus((p, q)) j rejected, by Claim 2 and TAR-B.

By Claim 4, the following two cases are exhaustive.
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Case 1: lsatus((p, q)) = branch. Let i, InTree((p, q)). It is enabled in s by

Claims 1 and 3 and assumption for this ca-se, and (s, V,) E lk".

Case 2. Istatus((p, q)) = unknown.

5. minlink(f) = (p, q), by Claim 2 and TAR-A(a).

6. rootchanged(f) = false, by Claim 5 and TAR-H.

Let V = ChangeRoot(f). It is enabled in s by Claims 1, 5 and 6, and (s, 4) E

(2) Let (s', ir, s) be a step of TAR, where s' is reachable and is in E,, (s', r) '

X., and s E EV,

(a) Suppose (s', r) V %P. We show that no possibility for r can affect whether

or not ChangeRoot(f) is enabled, i.e., v,(s) -= v,(s'). This together with (b) below

shows that v,(s) < v,(s').

Case 1: ChangeRoot(f) is enabled in s'. No action sets awake to false. No

action (other than ChangeRoot(f)) sets rootchanged(f) to false. No action sets

minlink(f) to nil. f remains in fragments because r is not Absorb(g, f), Merge(f, g) 't

or Merge(g, f), for any g, since rootchanged(f) = false.

Case 2: rootchanged(f) is not enabled in s'. By precondition of (P, awake is true .,

in s'. If rootchanged(f) = true in s', then the same is true in s, because the only

action that sets it to false is the Merge that created f. If minlink(f) = nil in s', then -

(p, q) # minlink(f), so even if minlink(f) becomes nonnil (by ComputeMin(f)), v,,
remains 0.

(b) Suppose (s',7) E T.'. Since (.s'.r) X,,,
, r InTree((p,q)). Thus

minlink(f) (p. q) in s' and r ChangeRoot(f). Obviously v goes from 1 to

0.

(c) Suppose (s'. r) T ,, ,/, is enabled in q', and (.s', !,) T I. The same b

argument as in (2a), Case 1, applies.
,%-,
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iv) cp is NotInTree((p,q)). We show that TAR is progressive for O via

M 3; Lemma 6 implies that TAR is equitable for p via M 3 . The goal is to show

that if q E nodes(fragment(p)) and (p,q) V subtree(fragment(p)), then eventually

lstatus((p,q)) = rejected. This requires a global argument, as for TestNode(p),

because it could be that some unknown link will never be tested until only one

fragment remains.

Let TV be q'TestNode(p) U {(s, NotInTree((p, q))) : s reachable, Notfn Tree((p, q))

enabled in s}.

Let vO(s) = VTestgode(p)(S) for all reachable states s.

Let v. be the same as for TestNode(p).

(1) Let s be a reachable state of TAR in E,. We show that there exists an

action 4 enabled in s such that (s, ?) E T w

lstatus((p,q)) # branch, by TAR-A(a). If lstatus((p,q)) = rejected, then let

1,= Notlv.Tree((p,q)).

Suppose lstatus((p, q)) = unknown in s. The rest of the argument is just like

that for TesiNod6(p), except for the following cases.

Case 2.1: ChangeRoot(f) is enabled in s because awake = true by the precon-

dition of p.

Case 2.2.1: We show that ComputeMin(f) is enabled in s by showing that
there are at least two fragments, as follows. If there is only one fragment, then f =
fragmept(p), and p V testbet(f) (since we assume testset(f) = 0). Bu since we also

assume lstatus((p, q)) = unknown, TAR-I gives as contradiction. Thus, there is an

external link of f, and by GC-B. accmin(f') y- nil.

(2) Like TestNode(p). after noting that r cannot be NotlnTree((p.q)). 0

4.3.4 DC is Progressive for an Action of GC

T'ie main idea, is to, show thut iuEPOII'L iressages converge on the core. This

argiunit is local to one fragment.

Lemma 30: DC' is progressive for Corprqi cMin(f) via M.
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Proof: By Corollary 20, (P o S4) A Poc is true in every reachable state of DC.

Thus, in the sequel we will use the HI, COM, GC and DC predicates.

Let I ', be the set of all pairs (s, 0) of reachable states s of DC and actions 0 of

DC such that in s, a REPORT(W) is in some dcqueue((q,p)) and either q is a child of

p, or else dcstatus(p) = unfind and p = mw-root(f); and 4 E { ChannelSend((q,p),

REPORT(W)), ChannelRecv((q, p), REPORT(W)), ReceiveReport( (q, p), w)}.

For reachable state s, let v,(s) be a quadruple with the following components:

1. The number of nodes p E nodes(f) with dcstatus(p) = find.

2. The number of PEPORT messages in dcqueueq((q,p)), for all (p, q) C subtree(f)

such that either q is a child of p or else p = mw-root(f) and dcstatus(p) = unfind.

3. The number of REPORT messages in dcqueueqp((q,p)) for all (p,q) E subtree(f)

such that either q is a child of p or else p = iw-root(f) and dcstatus(p) = unfind.

4. The number of REPORT messages in dcqueuep((q,p)) for all (p,q) E subtree(f)

such that either q is a child of p or else p m rw-root(f) and dcstatus(p) = unfind.

(1) Let s be a reachable state of DC in E.. We show that there exists an

action 4) enabled in s such that (s, V)) E 'I0.

Claims about s.

1. minlink(f) = nil, by precondition.

2. accmin(f) # nil, by precondition.

3. testset(f) = 0, by precondition.

4. There is an external link of f, by Claim 2 and GC-A.

5. No FIND message is in subtree(f), by Claim 3 and DC-D(c).

6. If dcstatus(p) = find, then a REPORT message is in subtree(p) headed toward p,

for any p E nodes(f), by Claim 3 and DC-I(b).

Suppose a REPORT(W) is in some dcqueue((q,p)) and q is a child of p. By
DC-B(a), inbranch(p) # (p,q). Obviously, (p,q) # core(f), so by DC-A(g),

dcstatus(p) =- find. By Claim 5 and DC-O, the REPORT(w) is the only message in

dcqueue((q,p ). If it is in dcqueueq((q,p)), let /, = ChannelSend((q,p),REPORT(w));

if it is in dcqueueqp((q,p)), let 4= ChannelRecv((qp), REPORT(W)); if it is in

dcqueuep((q,p)), let i/, = ReceiveReport(aw). Obviously, ?p is enabled in s, and

Suppose no RE,;PORT is in any dcqucue((q, p)) with q a child of 1). By Claim 6.

dc.,tatus(p) = unfind for all p C nodc(f). Tlin by ('laims 1, 4 and 3. a REPORT(w) is
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in dcqueue((q, p)), where (p,q) = core(f) and p = mw-root(f). By Claim 5 and DC-

0, the REPORT(w) is the only message in dcqueue((q, p)). if it is in dcqueueq((q, p)),

let / = ChannelSend((q,p),REPORT(w)); if it is in dcqueueqp((q,p)), let V i

ChannelRecv((q,p), REPORT(W)); if it is in dcqueuep((q,p)), let = ReceiveReport(w).

Obviously, 0 is enabled in s, and (s, 0) G C .

(2) Let (s', 7r, s) be a step of DC, where s' is reachable and is in E., (s', 7r) X,

and s E E.. We note the following claims about s'.

1. testset(f) = 0, by precondition.

2. minlink(f) = nil, by precondition.

3. No FIND is in subtree(f), by Claim 1 and DC-D(c).

(a) To show v,(s) 5 v,(s'), we show that v,(s) = v,(s') if (s',7r) 1 F.; this

together with part (b) below gives the result. Suppose (s', 7r) .
p

TestNode(p) is not enabled, for p E nodes(f), by Claim 1. ChangeRoot(f),

Merge(f,g), Merge(g, f), and Absorb(g, f) are not enabled, for g E fragments,

by Claim 2. ReceiveFind((p,q)), AfterMerge(p,q), ChannelSend((p,q), FIND), and

ChannelRecv((p, q),FIND) are not enabled, for p E nodes(f), by Claim 3. Thus 7r is

none of the above actions.

If 7r = ChannelSend((q, p), REPORT(W)) or ChannelRecv((q, p), REPORT(w)), for

(q,p) E subtree(f), then v. is unchanged, since (s', 7r) 0 T

Suppose 7r = ReceiveReport( (q,p),w).

Case 1: p is a child of q. By DC-A(a), inbranch(p) = (p,q). By DC-B(b),

dcstatus(p) = unfind. So the only change is the removal of the message. Since

p is a child of q, p # mw-rooi(f), so v,. is unchanged.

Case 2: (p,q) = core(f) and p :A mw-root(f). By DC-A(a), inbranch(p) = (p,q).

The only effect is that either the message is requeued (if dcstatus(p) = find), or the

message is removed (if dcstatus(p) = unfind); in both cases, v" is unchanged.

Case 3: (p,q) = core(f), p = rmw-root(f), and dcstatus(p) = find. The only effect

is that the message is requeued, so i, is unchanged. PIN

Suppose 7r = Merge(g, h). By precondition, minlink(g) minlink(h) $ nil in

3'. So f 7 g and f : h. Obviously i, is unchanged.
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Suppose 7r = Absorb(g, h). By precondition, rinlink(h) : nil in s', so f : h

by Claim 2. If f # g, then obviously v,, is unchanged. Suppose f = g. As in
the proof of condition (3a) in Lemma 19 for viii) 7r = Absorb, Case 2, no REPORT

message is headed toward minnode(h) and dcstatus(r) = unfind for all r G nodes(h)

in s'. Thus v. does not change.

The remaining actions (not mentioned above) obviously do not affect v,.

(b) Suppose (s', 7r) E TI'. We show vp(s) < v,(s'). If V, = ChannelSend(l, rn),

component 2 of v. decreases and component 1 is unchanged. If 4 = Channel-

Recv(l, in), component 3 of v, decreases and components 1 and 2 are unchanged.

Suppose V) = ReceiveReport((q, p), w).

Case 1: q is a child of p. By DC-B(a), inbranch(p) : (p,q). By DC-A(g),
dcstatus(p) == find. If findcount(p) = 1 in s', then component 1 of v, decreases.

Otherwise, component 4 decreases and components 1 through 3 are unchanged.

Case 2: q is not a child of p, p = mw-root(f), and dcstatus(p) = unfind. So
(p, q) = core(f). By DC-P, w > bestwt(p). But this contradicts (s', 7r) V Xv,.

(c) Suppose (s', 7r) V I', 0 is enabled in s', and (s',V,) E %P". We show that (,

is still enabled in s and (s, V) E 41,,. Since the queues are FIFO, there is no way to
disable 0.

It remains to show that (s, V)) is still in Tv%.

One possible way (s, 4') could no longer be in ',,2 is if the position of mw-root(f)

changes, i.e., if 7r is Merge(f, g), Merge(g, f), Absorb(f, g), or Absorb(g, f), for some

fragment g. But by Claim 2, minlink(f) = nil. Thus 7r cannot be Merge(f,g),

Merge(g, f), or Absorb(g, f). Suppose 7r = Absqorb(f,g). Let core(f) = (p,q), p
mw-root(f), and q be the endpoint of core(f) closest to tarqet(minlink(g)) in s'.

The minimum-weight external link of f has smaller weight than miniilk(g), which
by COM-A is the minimum-weight external link of g. Thus mw-root(f) does not

change after A b.sorb(f,y).

Another way is if the position of core(f) changes. This only happens if 7, is

Merge(f, g), Merge(g, f) or A b.sorb(g, f), which we showed is impossible.

The third way is if dcrtatus(p) chaxges from unfind to find, where p = rw-
root(f). This only happens if 7r =Reeeii'cFind((,,p)) for sonic q. But by Claim 3.
no FIND is in qzubtree(f). and by DC-D(-',). no FIND call be in an e-ternal link. 01
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4.3.5 CON is Progressive for Some Actions of COM

To show that CON is progressive for Merge and Absorb, we just show that

the CONNECT message on the minlink makes it across. For ChangeRoot, we show

that the chain of CHANGEROOT messages eventually reaches the minnode. These

arguments are all local to one fragment.

Lemma 31: CON is progressive for Merge(f,g), Absorb(f,g) and ChangeRoot(f)

via M 6 .

Proof: By Corollary 24. (PCoM o $6) A PCON is true in every reachable state of

CON. Thus, in the sequel we will use the HI, COM, and CON predicates.

i) o is Merge(fg). Let (p,q) = minedge(f). Let 4I1 be the set of all
pairs (s, 0) of reachable states s of CON and actions b of CON enabled in s,

such that p E { ChannelSend((q, p), CONNECT(1)), ChannelRecv((q, p), CONNECT(l)),

Merge (f,g)}.

For reachable state s of CON, let v,(s) = (x, y), where x is the number of

messages in cqueueq((q, p)) in s, and y is the number of messages in cqueueqp((q, p))

in s.

(1) Suppose s is a reachable state of CON in E.. We show that there is a
enabled in s such that (s,T) 'I'

Claims about s:

1. f 5- g, by precondition.
2. minedge(f) = minedge(g) = (p, q), by precondition.

3. rootchanged(f) = true, by precondition.
4. rootchanged(g) = true. by precondition.

5. A CONNECT(I) message is in cqueue(k), for some external link k of f, by Claim

6. A CONNECT(1) message is in cqueue( (p, q)), by Claims 2, 5 and CON-D.
7. A CONNECT(m) message is in cquene(k), for some external link k of g, by Claim

4.

8. A CONNECT(m) message is in cqueue((q,p)), by Claims 2, 6 and CON-D.

9. 1 = levcl(f), by Claim 5 and CON-D.

10. b, ilv,(g), by Claim 7 and CON-D.

11. level(f) < Ienel(g), by Claim 2 and COM-A.

12. level(q) < level(f), by Claim 2 and C()M-A.
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13. level(f) = level(g), by Claims 11 and 12.

14. 1 = m, by Claims 9, 10 and 13.
15. No CHANGEROOT message is in cqueue((q,p)), by Claim 1 and CON-C. V

16. Exactly one CONNECT message is in cqueue((q, p)), by Claims 7, 8 and CON-D. P

If CONNECT(l) is in cqueueq((q,p)), then let k = ChannelSend((q,p), coN-

NECT(l)). If CONNECT(l) is in cqueueqp((q,p)), then let 0 = ChannelRecv((q,p),

CONNECT(l)). If CONNECT(l) is in cqueuep((q,p)), then let ¢ Merge(f,g). It is

easy to see in all cases that 0 is enabled in sand (s, ) E T

(2) Suppose (s', 7r, s) is a step of CON, s' is reachable and in E, (s', 7r) V X,,
and s E EW.

(a) The only actions that can increase vV are ComputeMin(g), and Change-
Root(g). (Even though ChannelSend((q,p),m) would increase y, it would simulta-

neously decrease x.) By Claim 2, ComputeMin(g) is not enabled in s'. By Claim 4,
ChangeR oot(g) is not enabled in s'.

(b) Suppose (s', 7r) E TI,,. Since (s', ir) V X,, r j Merge(f, g). Obviously, the

other two choices for V)" decrease vV.

(c) Suppose (s', 7r) TVp, 0/ is enabled in s' and (s', 0) C TW We show ?' is

enabled in s and (s, ") E T*,. If ?k = ChannelSend or ChannelRecv, then it can only

be disabled by occurring. If V) = Merge(f, g) , then since s E EV, 4" is still enabled

in s (by the argument in part (1)). In all cases, (s, 0) E

ii) p is Absorb(fg). Let (q,p) =minlink(g). Let TII be the set of all

pairs (s, 0/) of reachable states s of CON and actions V) of CON enabled in S.

suich that 4" E f ChannelSend( (q, p), CONNECT( 1)), ChannclRecv( (q, p), coNNECT(l)).
Absorb (f, g)}.

For reachable state s of CON, let vV(s) = (x, y), where x is the number of

messages in cqueueq((q,p)) in s, and y is the number of messages in cqucueqp((q,p))

in s.

(1) Suppose s is a reachable state of CON in E". We show that there is a e"

enabled in s such that (s, 'b) P IP.

Claims abdut s:

1. level(g) < level(f), by precondition.
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2. (q,p) = minlink(g), by assumption.

3. f = fragment(p), by precondition.

4. rootchanged(g) = true, by precondition.

5. A CONNECT(l) message is in cqueue(k), where k is an external link of g, by Claim

4.

6. A CONNECT(l) message is in cqueue((q,p)), by Claims 2, 5 and CON-D.

7. No CHANGEROOT message is in cqueue((q,p)), by Claims 5 and 6 and CON-C.

If CONNECT(l) is in cqueueq((q,p)), then let ¢ = ChannelSend((q,p), cON-

NECT(l)). If CONNECT(l) is in cqueueqp((q,p)), then let ' = ChannelRecv((q,p),

CONNECT(l)). If CONNECT(l) is in cqueuep((q,p)), then let / - Absorb(f,g). In all

cases, it is easy to see that b is enabled in s and (s, 0) E T

(2) Suppose (s', 7r, s) is a step of CON, s' is reachable and in E., (s', 7r) V Xp,

and s E EW.

(a) The only actions that can increase v, are ComputeMin(g), and Change-

Root(g). (Even though ChannelSend((q, p),m) would increase y, it would simulta-

neously decrease x.) By Claim 2, ComputeMin(g) is not enabled in s'. By Claim 4,

ChangeRoot(g) is not enabled in s'.

(b) Suppose (s',7r) E T. Since (s',7r) V_ Xp, 7r - Absorb(f,g). Obviously, the

other two choices for 0 decrease v,.

(c) Suppose (s',7r) V 'I', b is enabled in s' and (s', ) P,. We show 0 is

enabled in s and (s, V)) E %Pw. If i ChannelSend or ChannelRecv, then it can only

be disabled by occurring. If i= Absorb(f, g), then since s E Ev, L is still enabled

in s (by the argument in part (1)). In all cases, (s,V,) E I p by definition.

iii) W is ChangeRoot(f). Let T.' be the set of all pairs (s,'i) of reach- N

able states s of CON and actions , of CON enabled in s, such that 0 E

{ Receive ChangeRoot((q, p)), ChannelSend((q, p), CHANGEROOT), ChannelRccv ((q, p).

CHANGEROOT) : p E node.(f)} U { ChangeRoot(f)}.

For reachable state s of CON, let v, (s) be a triple defined as follows. If there

is no CHANGEROOT message in ,subtree(f) ins, then v,(s) is (0,0,0). Suppose, in s, %

there is a CHANGEROOT message in cqueue((q,p)), where p E nodes(f). Then v,(s)

is:

1. the nurniber of nodes iii the path in .qublre(f) friom p to nmnnode(f) in s (counting

lw vl(,lpioiits p and Minnode(f));
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2. the number of CHANGEROOT messages in cqueue,.((r,t)), for all t E nodcs(f) in

s; and

3. the number of CHANGEROOT messages iln cqucuerK((r,t)), for all t E nodes(f) inl

S.

(By CON-B3 and CON-C, there is only one CHANGEROOT message in sub tree(f).

By COM-G, HI-A and HI-B, there is a unique path in subtree(f) from p to

minnode(f). Thus, v,(s) is well-defined.)

(1) 'vNe show that if s is a reachable state of CON in E,,, then there is a i

enabled in s such that (3, 0k) E TV*~ 1 6

Claims about s:

1. rootchanged(f) =false, by precondition of o.

2. minlink(f) k nil, by precondition of Wp.

If Inodes(f)I = 1 (i.e., sitbtreeff) = {p}, for some p), then let 4' Change-

Root(f). Obviously, 0' is enabled in. s and (.3, 0) E %P, . Now suppose Inodes(f)j > 1.

3. minnode(f) J root(f), by Claims 1 and 2 and CON-B.

4. Exactly one CHANGEROOT message is in cqueue((q,p)), for some (p~q) E

subtree(f), by Claims 1 and 2 and CON-B.

5. (q,p) #4 core(f), by Claim 4 and CON-C.
6. No CONNECT message is in cqueue((q,p)), by Claim 5 and CON-E.

If the CHANGEROOT message is in cqueueq((q,p)), then let bChannel-

Send((q,p), CHANGEROOT). If the CHANGEROOT message is in cqueUeqp((q,p)),

then let /'=ChannelRecv((q,p), CHANGEROOT). If the CILANGEROOT message is

in cqueuep((q~p)), then let 4'RecciveChiangeRooi((q,p)). In all three cases, ?"" is

enabled in s because of Claims 4 and 6. By dlefinition, (s, (0) E 1111P,

(2) Suppose (s',., s) is a step of CON such that .s' is reachable and in E,,,.

(8' 7r) X., and s E Ev.

(a) We show that if (s', 7r) V 'I,, then <s y.'.Together with (b) below.

it implies that v,(8~) < ~s')

Since minlink(f) #4 nil in sI, ir #6 CornputeMin(f). Since r'ootchanged(f)
false in s', 7t $4 Merg( f,qg), Mrye( g,f ), or A bsorb(qgf) for any g.
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Suppose 7r = Absorb(f,g). First we show that minnode(f) is unchanged. By
COM-A, level(h) level(f), where h = fragment(target(minlink(f))); by precon-
dition of Absorb(f,g), h : g, and thus wt(minlink(f)) < wt(minlink(g)). Also by
COM-A, minlink(g) is the minimum-weight external link of g. Thus minlink(f) does
not change. Second, we show that no CHANGEROOT message is in subtree(g). By pre-

condition of Absorb(f, g), rootchanged(g) = true. Then by CON-C, no CHANGEROOT

message is in subtree(g).

No other value of 7r, such that (s, r) Tw, affects v,.

(b) Suppose (s', 7r) E T'v. We show vw(s) < v,(s').

If 7r = ChannelSend((q, p), CHANGEROOT), then the second component of v. de-

creases while the first remains the same. If 7r = ChannelRecv((q,p), CHANGEROOT),

then the third component of v. decreases while the first two remain the same.

Suppose 7r = ReceiveChangeRoot((q,p)). By CON-C and CON-B there is ex-
actly one CHANGEROOT message in subtree(f). Since (s, 7r) _ Xw, p / minnode(f).
Thus, the first component of v,(s') is at least 1. The first component of vw decreases
by 1 in s, by definition of tominlink(p). Thus vw(s) < v,(s').

(c) Suppose (s', 7r) V T w, V' is enabled in s', and (s', 0) E T. We show 4 is
enabled in s, and (s,4O) ETw.

Suppose 4 - ChangeRoot(f).

Claims about s':

1. rootchanged(f) = false, by precondition of 4.
2. minlink(f) # nil, by precondition of V,.

3. subtree(f) {p}, by precondition of ,.
4. No CHANGEROOT message is in cqueue((q,p)) for any q, by Claim 3 and CON-C.

5. ComputeMin(f) is not enabled, by Claim 2.
6. Merge(f,g), Merge(g,f), and Absorb(g,f) are not enabled for any g, by Claim
1.

7. ReceiveChangeRoot((q,p)) is not enabled for any q, by Claim 4.

By Claims 5. 6 and 7, 7r is no action that can disable '4; hence, 0 is enabled ill
s. By definition, (s, 4') c T.
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Suppose V) = Receive ChangeRoo t((q, p) ). ChannelSend((q, p), (CIf AN*;F.ROOT ), or

ChannvclRecv((q,p),CIIANGErIOO'T). The only action that can disable 4, is t/, itself.

Thus, ?P is enabled in s and (s, 0) E T.'

4.3.6 GHS is Equitable for TAR

The interesting arguments are for showing GHS is equitable for SendTest(p),

and for ChangeRoot(f) when subtree(f) is a singleton node. For Send TeSt(p), we

show that an INITIATE-find message eventually reaches p. The big effort is for the

ChangeRoot(f). We must show that eventually every node will be awakened, either

by a Start action, or by the receipt of a CONN:CT or rEST message. This requires

a global argument about the entire graph. This is another place in which the state

component of T in the definition of progressive is needed, since it is possible for a

message to be requeued, leaving the state unchanged.

Lemma 32: GHS is equitable for TAR via M/TAR.

Proof: We show that GHS is equitable for each locally-controiled action p0 of

TAR via MTAR. First, a point of notation: let Receive((q,p),m) be a syn- *1

onym for ReceiveConnect( (q, p), 1) if - = CONNECT(I), a synonym for Receive-

Initiate((q, p), l, c, st) if n = INITIATE(l, C, st), etc.

By Corollary 26, PGHS is true in every reachable state of GHS. Thus, in the

sequel we will use the HI, COM, GC, TAR, DC, NOT, CON and GHS predicates.

i) p is InTree(l) or NotInTree(l). By Leinma 5, we are done.

ii) o is ChannelSend((q,p),m). We show that GHS is progressive for 0 via

MTAR. Lemma 6 gives the result.

Let TI' be the set of all pairs (s, V)) of reachable states s of GHS and actions

i,,! of GHS enabled in .s such that m' is the message at the head of queueq((q,p)) in

s, and V, = ChannelSend((q, p), rn').

For reachable state s, let iw(s) be the miniber of messages in queueq((q, p))

ahead of the message at the head of tarqucuq((q, p)).

Verifying t li progressive conditions is straightforward. .,

iii) is ChannelRecv((q,p),m). We show that GHS is progressive for ;

via AM'TAR. Lemm 6 gives thi result.
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Let TV be the set of all pairs (s, V,) of reachable states s of GHS and actions

¢ of GHS enabled in s such that m' is the message at the head of queueqp((q,p))

in s, and 4 = ChannelRec((q,p),m'). p.

For reechable state s, let vp(s) be the number of messages in queueqp((q,p))

ahead of the message at the head of tarqueueqp((q,p)).

Verifying the progressive conditions is straightforward.

iv) p is ReceiveTest((q,p),l,c), ReceiveAccept((q,p)), or Receive-

Reject((q,p)). We show that GHS is progressive for o via MTAR. Lemma 6

gives the result.

Let %P1, be the set of all pairs (s, 4) of reachable states s of GHS and actions

4' of GHS enabled in s such that m' is the message at the head of queuep((q,p)) in

s, and V' = Rcc ive((q,p), m).

For reachable state s, let vp(s) be the number of messages in queuep((q,p))

ahead of the message at the head of tarqueuep((q,p)).

Verifying the progressive conditions is straightforward.

v) Vp is SendTest(p). We show that GHS is progressive for p via MTAR.

Lemma 6 gives the result.

Let TV, be the set of all pairs (s, 7r) of reachable states s of GHS and actions V'

of GHS enabled in s such that one of the following is true: (Let f = fragment(p).)

" CONNECT(l) is in queue((q, r)), where (q, r) = core(f) and p E subtree(q), m is

any message in queue((q, r)) that is not behind the CONNECT(l) in s, and V' 6

{ ChannelSend((q,r),m), ChannelRecv((q,r),m), Receive((q,r), m)}.

" An INITIATE(l, c,find) message in queue((t, u)) is headed toward p and m is any

message in queue((t, u)) that is not behind the INITIATE(l, c,find) in s, and V' E

{ ChannelSend((t, u), m), ChannelRecv((t, u), in), Receive((t, u), m)}.

For reachable state s, v,(s) is a 7-tuple with the following components.

If no CONNECT is in queue((q,r)), where (q, r) = core(f) and p G subtree(q) in

., then com)onents 1 through 3 are 0. Suppose otherwise. By CON-D and CON-E,

there is only one CONNECT message in queue((q, r)).
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1. The number of messages in queueq((q,r)) that are not behind the CONNECT.

2. The number of messages in queueq((q,r)) that are not behind the CONNECT.

3. The number of messages in qucue,.( (q, r)) that are not behind the CONNI.;CT.

If no INITIATE(l,c,find) is headed toward p, then components 4 through 6 are

0. By DC-S, there is at most one such message. Suppose such a message is in

queue( (t, u)).

4. The number of nodes on the path in subtree(f) from u to p, including the

endpoints.

5. The number of messages in queuet((t, u)) that are not behind the INITIATE(l, C.,

find). V
6. The number of messages in queuet,((t, u)) that are not behind the INITIATE(l, c, S
find).

7. The number of messages in queue,((t, u)) that are not behind the INITIATE(l, C.

find).

(1) Let s be a reachable state of GHS in E.. Thus, p C testst(f) and

testlink(p) = nil. By the definition of testset(f), either a FIND message is headed

towar( p in some queue((q, r)), or a CONNECT message is in queue((q, r)), where
(q,r) = core(f) and p C subtree(q). In either case, let ?n be the message at the

head of que,,P(t,,,). Let ,, be ChhanelSend((q, r,m) if rn is in queueq((q, r)); let

V) be ChannelRecv((q,r),m) if m is in queueq,((q,r)); let 4 be Receive((q,r),m) if

rn is in queuer((q, r)). Obviously, 0 is enabled in s and (s, 0) E T '.

(2) Let (s', 7r, s) be a step of GHS, s' be reachable and in E,, (s', 7r) V X,

and s E ,. %

(a) We show that if (s', r) V' T.I,, then y(s') = vp,(s); together with (b) below,

this is enough. We consider all the ways that v. could change.

Can a CONNECT be added to queue((q.r)), with (q,r) = core(f) by 7r? By
COM-F, (pq) E subtree(f), so by TAR-A(b), Istat.us((q,r)) = branch. Yet by
inspecting the code, we see that CONNECT iS only added to a queue if its istatus is %,

not branch, or if the source node is sleeping, in which case GHS-A(c) implies that

the Istatus is not branch.

Since we've assumed (s', 7r) 1' V,, 110 CONNECT can be removed froi the rele-
vant queue."5

For a given fragment f. core(f) never changes.
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Can the identity of fragment(p) change? Since p E testset(f) by the precon-

dition of o, minlink(f) = nil in s' by GC-C. Thus no Absorb(g, f), Merge(f, g) or

Merge(g,f) is enabled in s'.

The number of messages in the same queue as the relevant CONNECT message

but not behind it cannot change, because the queues are FIFO (and (s', 7r) V ).

Can a relevant INITIATE message be added? The only way it can is if either

a CONNECT message in queue((q,ir)) with (q,r) = core(f) and p E subtree(q) is

received, or if the same INITIATE message headed toward p is received. Since (s', ir) {

T, 7r is neither of these actions.

Can the path from u to p change, where an INITIATE(l, c,find) is in queue((t, u))

headed toward p? By definition of headed toward and HI-A and HI-B, there is a

unique path from u to p in s'. Since HI-A and HI-B are also true in s and since the

minimum spanning tree is unique (by Lemma 10), the same unique path from u to

p exists in s.

The number of messages in the same queue as the relevant INITIATE message

but not behind it cannot change, because the queues are FIFO (and (s', 7r) { '). ,)

(b) It is easy to check that v.(s) < vw(s') if (s', r) E I ,.

(c) No action 4 such that (s', ) E 'IPI can become disabled in s without

occurring, since the queues are FIFO.

vi) V is ComputeMin(f). We show that the hypotheses of Lemma 7 are

satisfied to get the result.

Let A = GHS, B = TAR, C = DC, D = GC, and p = ComputeMin(f) in the

hypotheses of Lemma 7.

(1) If e is an execution of GHS, then by Lemmas 1 and 25, M4DC(e) is an

execution of DC.
I

(2) Let .s be a reachable state of TAR. If V is enabled in STAR(S), then as

argued in Section 4.2.3 (TAR to GC), , is enabled in S3(STAR(s)). By the way

the S's are defined, S3(S'lAR(s)) = S 4 (ScD(.)), so p = o is enabled in S 4 (SDc(,)).

(3) Suppose (s',r. s) is a step of GHS and .;' is reachable. If is not in

AT.-R(s', r), then p is not in M 4(Mnc(s'irs)) by inspection.
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(4) DC is progressive for p via M4, using 'Pp and tp, by Lemma 30.

(5) Let / be such that (t, 0) E %Pp for some t. Possible values of V) are

ChannelSend(l, REPORT(W)), ChannelRecv( l, nlu'poRT( u')), and ReceiveRcport( l, w).

Essentially the same arguments as in ii), iii) and iv) show that GHS is progressive

for 0.

vii) p is ChangeRoot(f) and subtree(f) is not {p} for any p. We show

that the hypotheses of Lemma 7 are satisfied to get the result.

Let A = GHS, B = TAR, C CON, D COM, and p ChangeRoot(f) in

the hypotheses of Lemma 7.

(1) If e is an execution of GHS, then by Lemmas 1 and 25, MCON(C) is an

execution of DC.

(2) Let s be a reachable state of TAR. Suppose cp is enabled in STAR(S). As

argued in Section 4.2.3 (TAR to GC), o is enabled in S3(STAR(S)). As argued in •

Section 4.2.2 (GC to COMY), p is enabled in ,2(S3(STAR(s))). By the way the S's e

are defined, S 2 (S3(STAR(S))) = S6(SCON(S)), so p = is enabled in S 6 (SCON(.S)).

(3) Suppose (s',7r,s) is a step of GHS and s' is reachable. If P is not in O

ATAR(S', 7r), then p is not in M(4coN(s'm s)) by inspection.

(4) CON is progressive for p via M 6 , using %P' and vp, by Lemma 31.

(5) Let i be such that (t,?/,) E Tp for some t. Possible values of .,-

are ChannelSend(l, CHANGEROOT), ChanneRecv(1, CH1ANGEROOT), and Receive-

ChangeRoot(l). Essentially the same arguments as in ii), iii) and iv) show that ,

GHS is progressive for P.

viii) y2 is ChangeRoot(f), subtree(f) is {p} for some p. We show that

GHS is progressive for ' via MATAR. Lemma 6 gives the result.

Let q, be the set of all pairs (s, tf') of reachable states , of GHS and internal

actions ?! of GHS enabled in .s such that none of the following is true:

ReceiveConnect( (q, r), I) for soie 7. 7 and 1. arld in .;, nstatu.(r) ,

sleeping. I > nleuel(r), lIstatus((r,q)) = unknown, and only one message is
In que-tj, ( q, r) ).

* t.,= Receiv Te~si((, r) . 1. ) for some q. r. I and c. and in s. au.vsl ( r)

sleeping. I > 'nil cl(r), and only one mliessage is in q'e, ( (,. i')).
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, = ReceiveReport((q, r), w) for some q, r and w, and in s, inbranch(r) (q, r),
nstatus(r) = find, and only one message is in queuer((q,r)).

For reachable state s, let v,(s) be the following tuple:

1. The number of fragments in s.

2. The number of fragments g with rootchanged(g) = false in s.

3. The number of fragments g with minlink(g) = nil in s.

4. The number of nodes q E V(G) such that q E testset(fragment(q)).

5. The summation over all q E V(G) of level(fragment(q)) - nlevel(q).
6. The summation over all q E V(G) of findcount(q).

7. The number of links (q, r) such that either Istatus((q, r)) = unknown, or tIse

Istatus((q, r)) = branch and there is a protocol message for (q,r).

8. The number of links (q, r) such that no ACCEPT or REJECT is in queue((q, r)).
9. The summation over all fragments g such that a CHANGEROOT is in some
queue((q, r)) of subtree(g) of the number of nodes in the path in subtree(g) from

r to minnode(g).

10. The number of fragments g such that AfterMerge(q, r) for DC is enabled for

some (I E nodes(g).

11. The number of messages in queueq((q,r)), for all (q, ') E L(G).

12. The number of messages in queueqr((q,r)), for all (q,r) E L(G).

13. The number of messages in queue((q, r)), for all (q,r) E L(G). k

14. The number of messages in queuer((q, r)) that are behind a CONNECT or TEST,

for all (q,r) E L(G).

(1) Let s be a reachable state of GHS in E,. We now demonstrate that some

action / is enabled in s with (s, 0) C TV.

By preconditions of p, awake = true, minlink(f) 6 nil and rootchanged(f)

false in s. By GHS-K, nstatus(p) = true in s. But since awake = true, there is some

nocie q such that nstatus(q) # sleeping. Thus A, the set of all fragments g such that

nstat-us(q) # sleeping for some q ( nodes(g), is non-empty. Let, I be the minimum

level of all fragments in A, and let Al {g E A: level(g) = 1}.

The strategy is to use a case analysis as follows. For each case, we show

that there is some queue((q,r)) with some message in in it in s. Let V, be

chosen as follows. If some message m' is at the head of queueq((q, r)), let

t/, = ChannelSend((qr),m.'). If no message is in queueq((q,r)) and some mes-

sage ?n' is at the head of queueqr((q, r)), let 0 = ChannelSend((q, r),m'). If no

iiie"sge is in queucq((q, r) ) or qu 'ueqr ((q,,,), nhen at. least one message, namely in,,
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is in queue,((q, r)); let ¢ = Receive((q,p), in'), where in' is the message at the head

of queuer((q, r)).

For each choice, / is obviously enabled in s. There are two methods to verify

that (s, V)) E T,,. Method 1 is to show that m is not CONNECT, TEST or REPORT.

Then, if V) = Receive((q, r), m') and rn' is CONNECT, TEST or REPORT, there is more

than one message in queuer((q,r)). Method 2 is to show that some variable in s

has a value such that even if V = Receive((q, r),m'), where m' is CONNECT, TEST'

or RFPORT, we have that (s, 0) E T ,.

Case 1: There is a fragment g E Al with testset(g) 5 0. Let q be some element

of testset(g). By definition of testset(g), Cases 1.1, 1.2 and 1.3 are exhaustive.

Case 1.1: A CONNECT(l) message is in queue(r,t), where (r,t) = core(g) and

q E subtree(r) in s. We use Method 2. By COM-F, (r,t) E subtree(g), so by

TAR-A(b), lstatus((t, r)) = branch.

Case 1.2: An INITIATE(l, c,find) message is in some queue((r, t)) headed toward

q in s. By Method 1, we are done.

Case 1.3: testlink(q) j nil in s. By TAR-C(a), testlink(q) = (q, r) for some r.

By TAR-C(c), there is a protocol message for (q, r).

Case 1.3.1: The protocol message is an ACCEPT or REJECT in queue((r, q)). By

Method 1, we are done.

Case 1.3.2: The protocol message is TEST(l',c) in queue((q,r}). Thus Istatus

((q, r)) : rejected. By TAR-E(b), ' = 1. If nstatus(r) = sleeping or I < nlevel(r),

we are done, by Method 2. Suppose nstatus(r) # sleeping and I > nlevel(r). By

definition of Al, 1 < level(fragment(r)), and thus nievel(r) < level(fragment(r)). By

NOT-G, either a NOTIFY(level(fragment(r)) message is in some queue((t, u)) headed

toward r, in which case we are done by Method 1, or AfterMerge(t, u) is enabled

for NOT, with r E subtree(u). In the latter case, by GHS-L, a CONNECT is at the

head of queue((u, t)); the same argument as in Case 1.1 gives the result.

Case 2: testset(g) = 0 for all g E A.

Case 2.1: There is a fragment g in Al with minlink(g) = nil. Since g # f and

G is connected, there is an external link of g. Since testset(g) = 0, by DC-D(c) no

FIND message is in subtree(g).
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Suppose dcstatus(q) = unfind for all q E nod es(g). By definition of miniink(g).

a REPORT message is in some que'ue((q, r)) headed toward mw-rootgg). We are done

by Method 2.S

Suppose dcstatus(q) = find for some q E nod es(g). By DC-I(b), since

testset(g) =a REPORT message is in some queue((r,t)) in subtree(q) headed

toward q. By DC-B(a), inbranch(t) #4 (t, r). We are done by Method 2.

Case 2.2: minlinc(g) 54 nil for all g E Al,

Case 2.2.1: There is a fragment g in A1 with rootchanged(g) = false. By GHS-

K, if subtree(g) = {q} for some q, then v,3tatus(q) = sleeping. By definition of

Al, subtree(g) 54 {q} for any q. By CON-B, a CHANGEROOT message is in some

queue((q, r)) in sub ree(g). We are done by Method 1.

Case 2.2.2: rooickanged(g) = true for all g E A,. By CON-D, a CONNECT

message is in queue(minlink(g)) for all g E Al.

Case 2.2.2.1: There is a fragment g in Al with minlink(g) = (q,r) and

level(fragment(r)) > 1.

If nlevel(r) > 1, we are done by Method 2. Suppose nlevel(r) :! 1. Essentially

the same argument as in Case 1.3(b) gives the result.

Case 2.2.2.2: For all fragments g in A1 level(fragment(target(minlink(g)))) 5

1. By COM-A, level1(fragment (target (minlink (g)))) = 1 for all g E At.

Case 2.2.2.2. 1: There is a fragment g in A1 such that minlink(g) = (q, r), and

fragment(r) V A, By definition of A& nstatus(r) = sleeping, and we are done be

Method 2.

Case 2.2.2.2.2: For all fragments g in &1 fragment(target(minlink(g))) E Al.

As argued in Lemma 27, Case 2.2.2 of verifying (1) for W = Combine, there are two

fragments g and h in Al such that minedge(g) = minedge(h) =(q, r). By TAR-H,

lstatus((r, q)) =lstatus((q, r)) =branch. By Method 2, we are done.

(2) Let (.9, 7r, sq) be a step of GH S, where s' is reachable and in E., (s', 7r) XV off"0

andl s E E 0.

193



5UAWVnF-W- -KrKV V. rW AMIT"WprU

Section 4.3.6: GHS is Equitable for TAR

(a) We show that if (s', 7r) V T,,, then v(s) =v(s'); together with part (1))
below, this gives the result. q,/ is defined to inrlide all the stat'-actium pairs tit
change the state. Thus, if (s', 7r) V 'P ,, then -.-4 ', and obviously , ) ='%,(').

(b) Suppose (s, 7r) E .. The breakdown of cases in this argument is essentially
the same as in the proof of the safety step simulations in Lemma 25. The notation
"Component 12" in a case means that component 12 of v,, decreases in going from
s' to s, and componcnts 1 tla-,gh 11 are unchanged.

" ir = ChannelSend((q, r), n). Component 11.

" 7r = ChannelRecv((q,r), m). Component 12.

" 7r = Receive Connect((q, r), ).

Case 1: nstatus(r) = sleeping in s'. If (q, r) is not the minimum-weight external
link of r, then: component 2. Otherwise, component 1.

Case 2: nstatus(r) 7£ sleeping, I = nlevel(r) and no CONNECT is in queue((r,q))

in s'.

Suppose Istatus((r,q)) = unknown. Since (s', r) , another message is in
queue((q, r)). By CON-D, CON-E and GHS-C, the other message is not a CONNECT

or TEST. Component 14.

Suppose lstatus((r,q)) # unknown. Since DC simulates AfterMerge(r,q), nei-
ther AfterMerge(r, q) nor AfterMerge(q, r) is enabled in s. Component 10.

Case 3: nstatus(r) 7# sleeping, 1 = nlevel(r), and CONNECT is in queue((r,q))

in s'. Component 1.

Case 4: nstatus(r) 5# sleeping and 1 < nlevel(r) in s'. Component 1.

" 7r = ReceiveInitiate((q, r), 1, c, st). By NOT-H(a), I > ndevel(r). Component 5.

" 7r = Receive Test((q,r),l,c). Let g = fragment(r).

Case 1: nstatuts(r) = sleeping in s'. Component 2.

Case 2: nstatus(r) # sleeping in s'.
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Case 2.1: 1 < level(g), and either c - core(g) or testlink(r) # (r,q) in s'. If an

ACCEPT is added, then component 8. If a REJECT is added, then either component

7 or component 8.

Case 2.2: 1 < level(g), c = core(g), and testlink(r) = (r,q) in s'. If there is no

link (r,t), t # q, with lstatus((r,t)) = unknown, then component 4. If there is such

a link, then component 7.

Case 2.3: 1 > level(g) in s'. Since (s, 7r) E %,, there is another message in

queuer((q, r)). By TAR-C(c) and GHS-C, the other message is not CONNECT or

TEST. Component 14.

" 7r = ReceiveAccept(langleq, r)). Component 4.

" ir = ReceiveReject((q, r)). If there is no link (r,t), t 6 q, with lstatus((r, t)) =

unknown, then component 4. If there is such a link, then component 7.

" 7r = ReceiveReport((q,r),w).

Case 1: (q,r) = core(g), nstatus(r) # find and w > bestwt(r) in s'. If

lstatus(bestlink(r)) = branch, then component 3. Otherwise, component 2.

Case 2a: (q,r) # core(g) in s'. If inbranch(r) = (r,q), then component 13.

Otherwise, component 6.

Case 2b: (q,r) = core(g) and nstatus(r) = find in s'. The only change is

that the REPORT message is requeued. We show that there is no other message in

queue((q, r)), and thus (s',7r) V %F,. First note that by COM-F, (q,r) E subtree(g).

By GHS-B, no CONNECT is in the queue. By DC-O, no INITIATE(*, *,found) is in the

queue. By GHS-E, no INITIATE(*, *,find) is in the queue. By TAR-E(a), no TEST

or REJECT is in the queue. By DC-O, no other REPORT is in the queue. By TAR-F.

no ACCEPT is in the queue. By CON-C, no CHANGEROOT is in the queue.

Case 2c: (q,r) = core), nstatus(r) = unfind, and w < bestwt(p). Component

13.

• ir = ReceiveChangeRoot((q,r)). If lstatus(bestlink(r)) # branch, then compo-

nent 2. Otherwise, component 9.

(c) Suppose (s', 7r) T ', ¢ is enabled in s', and (s',4') E T'. Since (s', 7) '

,, = s'. Obviously, i/, is enabled in s and (s,f) E %Pw.
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ix) ,p is Merge(fg). We use Lemnia 7. The same argument as in vii), with

p = Merge(f, g) and (3) as below, gives the result.

(3) Let V, be such that (t, 0) E %Pp for some t. Possible values of V, are

ChannelSend( k, CONNECT(l)), ChannelRev( k, CONNECT(l)), and Merge(f, g). E,,-

sentially the same arguments as in ii), iii) and iv) show that GHS is progressive

for 4.

x) p is Absorb(fg). We use Lemma 7. The same argument as in vii), with

p = Absorb(f g) and (3) as below, gives the result.

(3) Let 0 be such that (t,?)) E 'Fp for some t. Possible values of V, are

ChannelSend(k, CONNECT(l)), ChannelRecv( k, CONNECT(l)), and Absorb(f, g). Es-

sentially the same arguments as in ii), iii) and iv) show that GHS is progressive

for 4. 0

4.4 Satisfaction

Theorem 33: GHS solves MST(G).

Proof: By Theorem 12, HI solves MST(G). By Lemmas 13 and 27 and Theorem

8, COM satisfies HI. By Lemmas 15 and 28 and Theorem 8, GC satisfies COM.

By Lemmas 17 and 29 and Theorem 8, TAR satisfies GC. By Lemmas 25 and

32 and Theorem 9, GHS satisfies TAR. Thus, since "satisfies" and "solves" are

defined using subsets of schedules, GHS solves MST(G). 0

Acknowledgments

We thank Yehuda Afek, Steve Garland, Michael Merritt, Liuba Shrira and

members of the Theory of Distributed Systems research group at MIT for valuable

discussions.

References

[Al] B. Awerbuch, "Complexity of Network Synchronization," JA CM vol. 32, no.

4. pp. 804-823, 1985.

[A2] B. Awerbuch, "Optimal Distributed Algorithms for Minimum Weight Spanning

Tree, Counting, Leader Election and Related Problems," Proc. 1 9th Ann. ACM

Symp. on Theory of Computing, pp. 230-240, 1987.

196



Section 4.4: Satisfaction

[AG] B. Awerbuch and R. Gallager, "Distributed BFS Algorithms," Proc. 261 Ann.

IEEE Symp. on Foundations of Computer Science, pp. 250-256, 1985.

[AS] B. Alpern and F. Schneider, "Proving Bool-oan Combinations of Deterministic

Properties," Proc. 2 nd Ann. Symp. on Logic in Computer Science, pp. 131-137.

1987.

[CT] F. Chin and H. F. Ting, "An Almost Linear Time and O(n log n + e) Messages

Distributed Algorithm for Minimum-Weight Spanning Trees," Proc. 2 6 th Ann.

IEEE Symp. on Foundations of Computer Science, pp. 257-266, 1985.

[EF] T. Elrad and N. Francez, "Decomposition of Distributed Programs into

Communication-Closed Layers," Science of Computer Programming, vol. 2, no.
3, pp. 155-173, December 1982.

[F] N. Francez, Fairness, Springer-Verlag, New York, 1986, Chapter 2.

[FLS] A. Fekete, N. Lynch, L. Shrira, "A Modular Proof of Correctness for a Network

Synchronizer," Proc. 2 nd International Workshop on Distributed Algorithms.

1987.

[G] E. Gafni, "Improvements in the Time Complexity of Two Message-Optimal
Election Algorithms," Proc. 4 th Ann. A CM Symp. on Principles of Distributed

Computing, pp. 175-185, 1985.

[GHS] R. Gallager, P. Humblet and P. Spira, "A Distributed Algorithm for Minimum-
Weight Spanning Trees," ACM Trans. on Programming Languages and Sys-

tems, vol. 5, no. 1, pp. 66-77, 1983.

[H] D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Science of

Computer Programming, vol. 8, no. 3, pp. 231-274, June 1987.

[K] R. Kurshan, "Reducibility in Analysis of Coordination," Proc. IIASA Workshop

on Discrete Event Systems, 1987.

[L] L. Lamport, "Specifying Concurrent Program Modules," ACM Trans. on Pro-

gramming Languages and Systems, vol. 5, no. 2, pp. 190-222, April 1983.

[LM] N. Lynch and M. Merritt, "Introduction to the Theory of Nested Transac-
tions," to appear in Theoretical Computer Science. (Also available as technical

report MIT/LCS/TR-367, Laboratory for Computer Science, Massachusetts
Institute of Technology, 1986.)

197



Appendix

[LPS] D. Lehmann, A. Pnueli, and J. Stavi, "Impartiality, Justice and Fairness:

The Ethics of Concurrent Termination," Proc. 81h International Colloq-tiui i.

on Automata, Languages and Programming, pp. 264-277, July 1981.

[LSc] L. Lamport and F. Schneider, "The 'Hoare Logic' and All That." A CM Trans.

on Programming Languages and Systems, vol. 6, no. 2, pp. 281-296, April 1984.

[LSh] S. Lam and U. Shankar, "Protocol Verification via Projections," IEEE Tra,,,.

on Software Engineering, vol. SE-10, no. 4, pp. 325-342, July 1984.

[LT] N. Lynch and M. Tuttle, "Hierarchical Correctness Proofs for Distributed Algo-

rithms," Proc. 6wh Ann. ACM Symp. on Principles of Distributed Computing.

pp. 137-151, 1987. (Also available as technical report MIT/LCS/ TR-387, Lab-

oratory for Computer Science, Massachusetts Institute of Technology, 1987.)

[MP] Z. Manna and A. Pnueli, "Verification of Concurrent Programs: Temporal

Proof Principles," in D. Kozen, editor, Logic of Programs, Lecture Notes in

Computer Science 131, pp. 200-252, Springer-Verlag, Berlin, 1981.

[OG] S. Owicki and D. Gries, "An Axiomatic Proof Technique for Parallel Programs

I," Acta Informatica, vol. 6, no. 4, pp. 319-340, August 1976.

JS] E. Stark, "Foundations of a Theory of Specification for Distributed Systems,"

Ph.D. thesis, Laboratory for Computer Science, Massachusetts Institute of

Technology, August 1984. (Available as technical report MIT/LCS/TR-342.)

[SR] F. Stomp and W. de Roever, "A Correctness Proof of a Distributed Minimum-

Weight Spanning Tree Algorithm," Proc. 7 th International Conference on Dis-

tributed Computing Systems, pp. 440-447, 1987.

[W] J. Welch, "Topics in Distributed Computing: The Impact of Partial Synchrony.

and Modular Decomposition of Algorithms," Ph.D. thesis, Laboratory for Com- b
puter Science, Massachusetts Institute of Technology, March 1988. (To appear

as MIT/LCS technical report.)

Appendix

In this Appendix, we review the aspects of the model from [LT] that are relevant

to this paper.

An int-niput automann 4 is defincd by the following four components. (1)

There is a (possibly infinite) set of states with a subset of start states. (2) There is
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a set of actions, associated with the state transitions. The actions are divided into

three classes, input, output, and internal. Input actions are presumed to originate

in the automaton's environment; consequently the automaton must be able to react

to them no matter what state it is in. Output and internal actions (or, locally-

controlled actions) are under the local control of the automaton; internal actions

model events not observable by the environment. The input and output actions are

the external actions of A, denoted ext(A). (3) The transition relation is a set of

(state, action, state) triples, such that for any state s' and input action 7r, there is

a transition (s', 7r, s) for some state s. (4) There is an equivalence relation part(A)

partitioning the output and internal actions of A. The partition is meant to reflect

separate pieces of the system being modeled by the automaton. Action 7r is enabled

in state s' if there is a transition (s', 7r, s) for some state s.

An execution e of A is a finite or infinite sequence soir1 s 1 ... of alternating

states and actions such that so is a start state, (si_ 1 , 7ri, si) is a transition of A for

all i, and if e is finite then e ends with a state. The schedule of an execution e is 0

the subsequence of actions appearing in e.

We often want to specify a desired behavior using a set of schedules. Thus we

define an external schedule module S to consist of input and output actions, and a

set of schedules scheds(S). Each schedule of S is a finite or infinite sequence of the ,

actions of S. Internal actions are excluded in order to focus on the behavior visible to
the outside world. External schedule module S' is a sub-schedule module of external

schedule module S if S and S' have the same actior.s and scheds(S') C scheds(S). 1N

Automata can be composed to form another automaton, presumably modeling

a system made of smaller components. Automata communicate by synchronizing on

shared actions; the only allowed situations are for the output from one automaton
to be the input to others, and for several automata to share an input. Thus, B

automata to be composed must have no output actions in common, and the internal

actions of each must be disjoint from all the actions of the others. A state of the

composite automaton is a tuple of states, one for each component. A start state
of the composition has a start state in each component of the state. Any output

action of a component becomes an output action of the composition, and similarly
for an internal action. An input action of the composition is an action that is input

for every component for which it is an action. In a transition of the composition
on action 7r, each com)onent of the state changes as it would in the component

automaton if 7r occurred; if 7r is not an action of some component automaton,

then the corresponding state component does not change. The partition of the
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composition is the union of the 1)artitions of the coilponllnt automata.

Given an automaton A and a subset fl of its actions, we define the aumtomatonL

Hiden(A) to be the automaton .4' differing from A only in that each action M Ii
becomes an internal action. This operation is useful for hiding actions that model

interprocess communication in a composite automaton, so that they are no longer
visible to the environment of the composition.

An execution of a system is fair if each component is given a chance to make
progress infinitely often. Of course, a process might not be able to take a step every
time it is given a chance. Formally stated, execution r of automaton A is fair if for
each class C of part(A), the following two conditions hold. (1) If C is finite, then no

action of C is enabled in the final state of c. (2) If e is infinite, then either actions

from C appear infinitely often in e, or states in which no action of C is enabled
appear infinitely often in e. Note that any finite execution of A is a prefix of some

fair execution of A.

The fair behavior of automaton A, denoted Fairbehs(A), is the external sched-
ule module with the input and output actions of A, and with the set of schedules
{alext(A) : a is the schedule of a fair execution of A}.' A problem is (specified by)
an external schedule module. Automaton A solves the problem P if Fairbehs(A)

is a sub-schedule module of P, i.e., the behavior of A visible to the outside world is
conzistent with the behavior required in the problem specification. Automaton A
satisfies automaton B if Fairbehs(A) is a sub-schedule module of Fair bchzs(B).

If a is a sequence from a set S and T is a subset of S, then IT is defined to

be the subsequence of n consisting of elements in T.
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